OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 547–561

Ultra-broadband sum-frequency vibrational spectrometer of aqueous interfaces based on a non-collinear optical parametric amplifier

Oleksandr Isaienko and Eric Borguet  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 547-561 (2012)
http://dx.doi.org/10.1364/OE.20.000547


View Full Text Article

Enhanced HTML    Acrobat PDF (1523 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an ultrabroadband IR-visible sum-frequency (SF) setup that allows simultaneous acquisition of the entire vibrational spectrum of water molecules at mineral surfaces in the OH stretching region without ever tuning the IR laser pulses. Our newly developed 800-nm pumped noncollinear optical parametric amplifier (NOPA) generates broadband mid-IR pulses (~1800-3500 nm, or ~2900 – 6000 cm−1) with bandwidths >600 cm−1 at half-maximum at near 3500 cm−1. Using the ultra-broadband IR NOPA, we constructed a sum-frequency vibrational spectrometer that allowed the acquisition of spectra of the OH stretches of water at hydrophilic and hydrophobic silica surfaces, over the frequency range ~2900 – 3800 cm−1, within 60 s, much shorter than with scanning SFG spectrometers. The ultra-broadband SFG spectrometer reported here can be potentially applied to time-resolved measurements of kinetics at interfaces.

© 2011 OSA

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.6490) Spectroscopy : Spectroscopy, surface
(240.1485) Optics at surfaces : Buried interfaces

ToC Category:
Spectroscopy

History
Original Manuscript: September 26, 2011
Revised Manuscript: November 28, 2011
Manuscript Accepted: November 29, 2011
Published: December 21, 2011

Citation
Oleksandr Isaienko and Eric Borguet, "Ultra-broadband sum-frequency vibrational spectrometer of aqueous interfaces based on a non-collinear optical parametric amplifier," Opt. Express 20, 547-561 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. R. Shen and V. Ostroverkhov, “Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces,” Chem. Rev. 106(4), 1140–1154 (2006).
  2. G. L. Richmond, “Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy,” Chem. Rev. 102(8), 2693–2724 (2002).
  3. F. Vidal and A. Tadjeddine, “Sum-firequency generation spectroscopy of interfaces,” Rep. Prog. Phys. 68(5), 1095–1127 (2005).
  4. M. S. Yeganeh, S. M. Dougal, and H. S. Pink, “Vibrational spectroscopy of water at liquid/solid interfaces: Crossing the isoelectric point of a solid surface,” Phys. Rev. Lett. 83(6), 1179–1182 (1999).
  5. L. Zhang, C. Tian, G. A. Waychunas, and Y. R. Shen, “Structures and charging of alpha-alumina (0001)/water interfaces studied by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 130(24), 7686–7694 (2008).
  6. M. Flörsheimer, K. Kruse, R. Polly, A. Abdelmonem, B. Schimmelpfennig, R. Klenze, and T. Fanghänel, “Hydration of mineral surfaces probed at the molecular level,” Langmuir 24(23), 13434–13439 (2008).
  7. K. A. Becraft and G. L. Richmond, “In situ vibrational spectroscopic studies of the CaF2/H2O interface,” Langmuir 17(25), 7721–7724 (2001).
  8. A. J. Hopkins, S. Schrödle, and G. L. Richmond, “Specific ion effects of salt solutions at the CaF2/water interface,” Langmuir 26(13), 10784–10790 (2010).
  9. Q. Du, E. Freysz, and Y. R. Shen, “Vibrational spectra of water molecules at quartz/water interfaces,” Phys. Rev. Lett. 72(2), 238–241 (1994).
  10. K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).
  11. S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface: second harmonic studies of the silica/water interface,” Chem. Phys. Lett. 191(3-4), 327–335 (1992).
  12. K. C. Jena, P. A. Covert, and D. K. Hore, “The effect of salt on the water structure at a charged solid surface: differentiating second- and third-order nonlinear contributions,” J. Phys. Chem. Lett. 2(9), 1056–1061 (2011).
  13. Z. Yang, Q. F. Li, M. R. Gray, and K. C. Chou, “Structures of water molecules at solvent/silica interfaces,” Langmuir 26(21), 16397–16400 (2010).
  14. S. Ye, S. Nihonyanagi, and K. Uosaki, “Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer,” Phys. Chem. Chem. Phys. 3(16), 3463–3469 (2001).
  15. C. S. Tian and Y. R. Shen, “Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(36), 15148–15153 (2009).
  16. S. Schrödle and G. L. Richmond, “Sequential wavelength tuning: dynamics at interfaces investigated by vibrational sum-frequency spectroscopy,” Appl. Spectrosc. 62(4), 389–393 (2008).
  17. L. J. Richter, T. P. Petralli-Mallow, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23(20), 1594–1596 (1998).
  18. A. Lagutchev, A. Lozano, P. Mukherjee, S. A. Hambir, and D. D. Dlott, “Compact broadband vibrational sum-frequency generation spectrometer with nonresonant suppression,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 75(4), 1289–1296 (2010).
  19. S. Nihonyanagi, A. Eftekhari-Bafrooei, and E. Borguet, “Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer,” J. Chem. Phys. 134(8), 084701 (2011).
  20. A. B. Voges, G. Y. Stokes, J. M. Gibbs-Davis, R. B. Lettan, P. A. Bertin, R. C. Pike, S. T. Nguyen, K. A. Scheidt, and F. M. Geiger, “Insights into heterogeneous atmospheric oxidation chemistry: Development of a tailor-made synthetic model for studying tropospheric surface chemistry,” J. Phys. Chem. C 111(4), 1567–1578 (2007).
  21. A. Eftekhari-Bafrooei and E. Borguet, “Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water,” J. Am. Chem. Soc. 132(11), 3756–3761 (2010).
  22. G. Ma, J. Liu, L. Fu, and E. C. Y. Yan, “Probing water and biomolecules at the air-water interface with a broad bandwidth vibrational sum frequency generation spectrometer from 3800 to 900 cm-1,” Appl. Spectrosc. 63(5), 528–537 (2009).
  23. S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).
  24. S. Nihonyanagi, S. Ye, and K. Uosaki, “Sum frequency generation study on the molecular structures at the interfaces between quartz modified with amino-terminated self-assembled monolayer and electrolyte solutions of various pH and ionic strengths,” Electrochim. Acta 46(20-21), 3057–3061 (2001).
  25. R. L. York, Y. M. Li, G. J. Holinga, and G. A. Somorjai, “Sum frequency generation vibrational spectra: the influence of experimental geometry for an absorptive medium or media,” J. Phys. Chem. A 113(12), 2768–2774 (2009).
  26. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71, 457–465 (2000).
  27. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
  28. T. Kobayashi and A. Shirakawa, “Tunable visible and near-infrared pulse generator in a 5 fs regime,” Appl. Phys. B 70, S239–S246 (2000).
  29. C. J. Fecko, J. J. Loparo, and A. Tokmakoff, “Generation of 45 femtosecond pulses at 3 μm with a KNbO3 optical parametric amplifier,” Opt. Commun. 241(4-6), 521–528 (2004).
  30. I. Nikolov, A. Gaydardzhiev, I. Buchvarov, P. Tzankov, F. Noack, and V. Petrov, “Ultrabroadband continuum amplification in the near infrared using BiB3O6 nonlinear crystals pumped at 800 nm,” Opt. Lett. 32(22), 3342–3344 (2007).
  31. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. De Silvestri, and G. Cerullo, “Generation of broadband mid-infrared pulses from an optical parametric amplifier,” Opt. Express 15(23), 15035–15040 (2007).
  32. D. Brida, M. Marangoni, C. Manzoni, S. D. Silvestri, and G. Cerullo, “Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier,” Opt. Lett. 33(24), 2901–2903 (2008).
  33. T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32(22), 3330–3332 (2007).
  34. P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35(12), 1962–1964 (2010).
  35. E. Rubino, J. Darginavicius, D. Faccio, P. Di Trapani, A. Piskarskas, and A. Dubietis, “Generation of broadly tunable sub-30-fs infrared pulses by four-wave optical parametric amplification,” Opt. Lett. 36(3), 382–384 (2011).
  36. S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, “KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: analysis and comparison,” Appl. Phys. B 70, S247–S252 (2000).
  37. O. Isaienko and E. Borguet, “Generation of ultra-broadband pulses in the near-IR by non-collinear optical parametric amplification in potassium titanyl phosphate,” Opt. Express 16(6), 3949–3954 (2008).
  38. O. Isaienko and E. Borguet, “Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses,” J. Opt. Soc. Am. B 26(5), 965–972 (2009).
  39. O. Isaienko and E. Borguet, “Ultra-broadband infrared pulses from a potassium-titanyl phosphate optical parametric amplifier for VIS-IR-SFG spectroscopy,” in Ultrafast Phenomena XVI (Springer Series in Chemical Physics), P. Corkum, S. Silvestri, K. A. Nelson, E. Riedle, and R. W. Schoenlein, eds. (Springer Berlin Heidelberg, 2009), pp. 777–779.
  40. O. Isaienko and E. Borguet, “Ultra-broadband near-IR non-collinear optical parametric amplification in potassium niobate and lithium niobate,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFC7. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CFC7
  41. O. Isaienko, E. Borguet, and P. Vöhringer, “High-repetition-rate near-infrared noncollinear ultrabroadband optical parametric amplification in KTiOPO4.,” Opt. Lett. 35(22), 3832–3834 (2010).
  42. M. Tiihonen, V. Pasiskevicius, A. Fragemann, C. Canalias, and F. Laurell, “Ultrabroad gain in an optical parametric generator with periodically poled KTiOPO4,” Appl. Phys. B 85(1), 73–77 (2006).
  43. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A, Pure Appl. Opt. 3(3), R1–R19 (2001).
  44. F. Rotermund, V. Petrov, and F. Noack, “Femtosecond noncollinear parametric amplification in the mid-infrared,” Opt. Commun. 169(1-6), 183–188 (1999).
  45. D. Bodlaki and E. Borguet, “Picosecond infrared optical parametric amplifier for nonlinear interface spectroscopy,” Rev. Sci. Instrum. 71(11), 4050–4056 (2000).
  46. A. Eftekhari-Bafrooei and E. Borguet, “Effect of surface charge on the vibrational dynamics of interfacial water,” J. Am. Chem. Soc. 131(34), 12034–12035 (2009).
  47. W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), pp. 33.33–33.83.
  48. T. J. Wang, Z. Major, I. Ahmad, S. A. Trushin, F. Krausz, and S. Karsch, “Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation,” Appl. Phys. B 100(1), 207–214 (2010).
  49. G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
  50. N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, “Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses,” Opt. Lett. 27(6), 433–435 (2002).
  51. C. Heese, L. Gallmann, U. Keller, C. R. Phillips, and M. M. Fejer, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3.,” Opt. Lett. 35(14), 2340–2342 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited