OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 601–606

Integrated-optic polarization rotator with obliquely deposited columnar thin film

Tzyy-Jiann Wang and Yu-Chen Cheng  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 601-606 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1594 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new integrated-optic polarization rotator with anisotropic cladding formed by oblique angle deposition is presented. Optical anisotropy with tilt principal axes in the obliquely deposited columnar thin film induces hybrid polarization modes in the waveguide and thus produces polarization rotation. The dependence of device characteristics on columnar film parameters, such as column angle, film thickness, extraordinary index, and optical anisotropy, is investigated by 3D full-vectorial finite difference beam propagation method. The polarization rotator with Ta2O5 columnar thin film has polarization conversion efficiency as high as 99% and extinction ratio of 25dB.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: November 14, 2011
Revised Manuscript: December 12, 2011
Manuscript Accepted: December 14, 2011
Published: December 22, 2011

Tzyy-Jiann Wang and Yu-Chen Cheng, "Integrated-optic polarization rotator with obliquely deposited columnar thin film," Opt. Express 20, 601-606 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Merterns, B. Scholl, and H. J. Schmitt, “Strong polarization conversion in periodically loaded strip waveguides,” IEEE Photon. Technol. Lett. 10(8), 1133–1135 (1998). [CrossRef]
  2. Z. Huang, R. Scarmozzino, G. Nagy, J. Steel, and R. M. Osgood, “Realization of a compact and single-mode optical passive polarization converter,” IEEE Photon. Technol. Lett. 12(3), 317–319 (2000). [CrossRef]
  3. C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, and M. K. Smit, “Novel compact polarization converters based on ultra short bends,” IEEE Photon. Technol. Lett. 8(10), 1346–1348 (1996). [CrossRef]
  4. J. Zhang, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010). [CrossRef]
  5. D. M. H. Leung, B. M. A. Rahman, and K. T. V. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J. 3(3), 381–389 (2011). [CrossRef]
  6. M. C. Oh, S. S. Lee, and S. Y. Shin, “Simulation of polarization converter formed by poling-induced polymer waveguides,” IEEE J. Quantum Electron. 31(9), 1698–1704 (1995). [CrossRef]
  7. A. V. Tsarev, “New compact polarization rotator in anisotropic LiNbO3 graded-index waveguide,” Opt. Express 16(3), 1653–1658 (2008). [CrossRef] [PubMed]
  8. T. Lang, F. Bahnmüller, and P. Benech, “New passive polarization converter on glass substrate,” IEEE Photon. Technol. Lett. 10(9), 1295–1297 (1998). [CrossRef]
  9. T. J. Wang and J. S. Chung, “Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate,” Appl. Phys. B 80(2), 193–198 (2005). [CrossRef]
  10. H. Porte, J. P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on y-cut z-propagating LiNbO3 with an electro-optic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25(8), 1760–1762 (1989). [CrossRef]
  11. L. N. Binh, J. Livingstone, and D. H. Steven, “Tunable acousto-optic TE-TM mode converter on a diffused optical waveguide,” Opt. Lett. 5(3), 83–84 (1980). [CrossRef] [PubMed]
  12. P. K. Tien, R. J. Martin, R. Wolfe, R. C. Le craw, and S. L. Blank, “Switching and modulation of light in magneto-optic waveguides of garnet films,” Appl. Phys. Lett. 21(8), 394–396 (1972). [CrossRef]
  13. I. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37(13), 2653–2659 (1998). [CrossRef] [PubMed]
  14. M. A. Swillam, D. A. Khalil, and A. H. Morshed, “Effect of the fabrication and design parameters on the performance of multimode interference devices made by ion exchange: a detailed study,” J. Opt. A, Pure Appl. Opt. 10(12), 125301 (2008). [CrossRef]
  15. Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. A 23(8), 2014–2019 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited