OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 621–626

Gold nanostars as thermoplasmonic nanoparticles for optical heating

R. Rodríguez-Oliveros and José A. Sánchez-Gil  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 621-626 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (890 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gold nanostars are theoretically studied as efficient thermal heaters at their corresponding localized surface-plasmon resonances (LSPRs). Numerical calculations are performed through the 3D Green’s Theorem method to obtain the absorption and scattering cross sections for Au nanoparticles with star-like shape of varying symmetry and tip number. Their unique thermoplasmonic properties, with regard to their (red-shifted) LSPR wavelentgh, (∼ 30-fold increase) steady-state temperature, and scattering/absorption cross section ratios, make them specially suitable for optical heating and in turn for cancer thermal therapy.

© 2011 OSA

OCIS Codes
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: September 27, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 6, 2011
Published: December 23, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

R. Rodríguez-Oliveros and José A. Sánchez-Gil, "Gold nanostars as thermoplasmonic nanoparticles for optical heating," Opt. Express 20, 621-626 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. J. Halas, S. Lal, C. Wei-Shun, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef] [PubMed]
  2. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated material,” Nano Lett. 5, 1371–1377 (2005). [CrossRef] [PubMed]
  3. M. A. Barral and A. M. Llois, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002). [CrossRef]
  4. C. Loo, A. Lowery, N. J. Halas, J. L. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005). [CrossRef] [PubMed]
  5. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. J. Halas, and J. L. West, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004). [PubMed]
  6. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007). [CrossRef] [PubMed]
  7. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles we describe recent studies on photothermal effects using colloidal,” Nano Today 2, 30–38 (2007). [CrossRef]
  8. F. X. Gu, R. Karnik, A. Z. Wang, F. Alexis, E. Levy-Nissenbaum, S. Hong, R. S. Langer, and O. C. Farokhzad, “Targeted nanoparticles Over the past decade, there has been an increasing interest in using fabrication of targeted NPs using microfluidic devices,” Nano Today 2, 14–21 (2007). [CrossRef]
  9. P. K. Jain, I. H. El-Hayed, and M. A. El-sayed, “Au nanoparticles target cancer,” Nano Today 7, 1929–1934 (2007).
  10. W. Zhao and J. M. Karp, “Tumour targeting: Nanoantennas heat up,” Nature Mater. 8, 453–454 (2009). [CrossRef]
  11. V. Giannini, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Surface plasmon resonances of metallic nanostars/nanoflowers for surface-enhanced Raman scattering,” Plasmonics 5, 99–104 (2010). [CrossRef]
  12. A. Tassadit, D. Macías, J. A. Sanchez-Gil, and R. Rodríguez-Oliveros, “Metal nanostars: Stochastic optimization of resonant scattering properties,” Superlattices Microst. 49, 288–293 (2011). [CrossRef]
  13. P. Senthil Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F. J. García de Abajo, and L. M. Liz-Marzán, “High-yield synthesis and optical response of gold nanostars,” Nanotechnology 19, 015606 (2008). [CrossRef] [PubMed]
  14. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jäckel, G. Laurent, L. Douillard, and F. Charra, “Selective excitation of individual plasmonics hotspots at the tips of single gold nanostars,” Nano Lett. 11, 402–407 (2011). [CrossRef] [PubMed]
  15. S. Mazzuco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L. M. Liz-Marzán, and F. J. García de Abajo, “Spatially resolved measurements of plasmonic eigenstates in conplex-shaped, asymmetric nanoparticles: gols nanostars,” Eur. Phys. J. Appl. Phys. 54, 33512 (2011). [CrossRef]
  16. G. Baffou, P. M. Kreuzer, F. Kulzer, and R. Quidant, “Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy,” Opt. Express 17, 3291–3298 (2009). [CrossRef] [PubMed]
  17. B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, and M. J. Van Bael, “Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy,” Small 7, 2498–2506 (2011).
  18. M. Honda, Y. Saito, N. I. Smith, K. Fujita, and S. Kawata, “Nanoscale heating of laser irradiated sigle gold nanoparticles in liquid,” Opt. Express 19, 12375–12383 (2011). [CrossRef] [PubMed]
  19. R. Rodríguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surface,” Opt. Express 19, 12208–12219 (2011). [CrossRef] [PubMed]
  20. J. Gielis, “A generic geometric transformation that unifies a wide range of natural and abstract shapes.” Am. J. Bot. 90, 333–338 (2003). [CrossRef] [PubMed]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  22. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009). [CrossRef]
  23. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: A Greens function approach,” Phys. Rev. B 82, 1–11 (2010). [CrossRef]
  24. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010). [CrossRef] [PubMed]
  25. J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “The synthesis of SERS-Active gold nanoflower tags for in vivo applications,” ACS Nano 2, 2473–2480 (2008). [CrossRef]
  26. T. Vo-dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. Neng Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C pp. 7480–7488 (2010). [CrossRef]
  27. E. Nalbant Esenturk and A. R. Hight Walker, “Surface-enhanced Raman scattering spectroscopy via gold nanostars,” J. Raman Spectrosc. 40, 86–91 (2009). [CrossRef]
  28. J. M. Cabrera-Trujillo, J. M. Montejano-Carrizales, J. L. Rodríguez-López, W. Zhang, J. J. Velázquez-Salazar, and M. José-Yacaman, “Controlling and growth of stellated gold clusters: experimental synthesis and theoretical study,” J. Phys. Chem. C 114, 21051–21060 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited