OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 663–671

Real time ablation rate measurement during high aspect-ratio hole drilling with a 120-ps fiber laser

Francesco P. Mezzapesa, Teresa Sibillano, Francesca Di Niso, Antonio Ancona, Pietro M. Lugarà, Maurizio Dabbicco, and Gaetano Scamarcio  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 663-671 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the instantaneous detection of the ablation rate as a function of depth during ultrafast microdrilling of metal targets. The displacement of the ablation front has been measured with a sub-wavelength resolution using an all-optical sensor based on the laser diode self-mixing interferometry. The time dependence of the laser ablation process within the depth of aluminum and stainless steel targets has been investigated to study the evolution of the material removal rate in high aspect-ratio micromachined holes.

© 2011 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.3390) Lasers and laser optics : Laser materials processing
(140.3510) Lasers and laser optics : Lasers, fiber
(280.3420) Remote sensing and sensors : Laser sensors
(320.7090) Ultrafast optics : Ultrafast lasers
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Laser Microfabrication

Original Manuscript: October 25, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: November 26, 2011
Published: December 23, 2011

Francesco P. Mezzapesa, Teresa Sibillano, Francesca Di Niso, Antonio Ancona, Pietro M. Lugarà, Maurizio Dabbicco, and Gaetano Scamarcio, "Real time ablation rate measurement during high aspect-ratio hole drilling with a 120-ps fiber laser," Opt. Express 20, 663-671 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Breitling, C. Föhl, F. Dausinger, T. Kononenko, and V. Konov, in Femtosecond Technology for Technical and Medical Applications, F. Dausinger, F. Lichtner and H. Lubatschowski, eds. (Springer, Berlin, 2004) Chap. 7,11.
  2. C. Dorman and M. Schulze, “Picosecond micromachining update,” Laser Technik J. 5(4), 44–47 (2008). [CrossRef]
  3. J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples,” Phys. Rev. B 74(22), 224106 (2006). [CrossRef]
  4. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiatiuon,” Phys. Rev. B 73(13), 134108 (2006). [CrossRef]
  5. S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005). [CrossRef]
  6. E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: Evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71(17), 174405 (2005). [CrossRef]
  7. M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in steel with frequency-doubled ultrashort pulsed laser radiation,” JLMN-Journal of Laser Micro/Nanoengineering 3(3), 129–134 (2008).
  8. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express 18(21), 22305–22313 (2010). [CrossRef] [PubMed]
  9. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004). [CrossRef]
  10. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008). [CrossRef] [PubMed]
  11. T. V. Kononenko, V. Konov, S. Garnov, S. Klimentov, and F. Dausinger, “Dynamics of deep short pulse laser drilling: ablative stages and light propagation,” Laser Phys. 11, 343–351 (2001).
  12. A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009). [CrossRef]
  13. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003). [CrossRef]
  14. S. Döring, S. Richter, S. Nolte, and A. Tünnermann, “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010). [CrossRef] [PubMed]
  15. P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, “In situ 24 kHz coherent imaging of morphology change in laser percussion drilling,” Opt. Lett. 35(5), 646–648 (2010). [CrossRef] [PubMed]
  16. C. S. Nielsen and P. Balling, “Deep drilling of metals with ultrashort laser pulses: a two stage process,” J. Appl. Phys. 99(9), 093101 (2006). [CrossRef]
  17. F. P. Mezzapesa, A. Ancona, T. Sibillano, F. De Lucia, M. Dabbicco, P. M. Lugarà, and G. Scamarcio, “High-resolution monitoring of the hole depth during ultrafast laser ablation drilling by diode-laser self-mixing interferometry,” Opt. Lett. 36(6), 822–824 (2011). [CrossRef] [PubMed]
  18. F. P. Mezzapesa, L. Columbo, M. Brambilla, M. Dabbicco, A. Ancona, T. Sibillano, F. De Lucia, P. M. Lugarà, and G. Scamarcio, “Simultaneous measurement of multiple target displacements by self-mixing interferometry in a single laser diode,” Opt. Express 19(17), 16160–16173 (2011). [CrossRef] [PubMed]
  19. F. De Lucia, M. Putignano, S. Ottonelli, M. di Vietro, M. Dabbicco, and G. Scamarcio, “Laser-self-mixing interferometry in the Gaussian beam approximation: experiments and theory,” Opt. Express 18(10), 10323–10333 (2010). [CrossRef] [PubMed]
  20. S. Ottonelli, M. Dabbicco, F. De Lucia, and G. Scamarcio, “Simultaneous measurement of linear and transverse displacements by laser self-mixing,” Appl. Opt. 48(9), 1784–1789 (2009). [CrossRef] [PubMed]
  21. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982). [CrossRef] [PubMed]
  22. A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys., A Mater. Sci. Process. 76(3), 373–378 (2003). [CrossRef]
  23. A. Ruf, P. Berger, F. Dausinger, and H. Hugel, “Analytical investigations on geometrical influences on laser drilling,” J. Phys. D Appl. Phys. 34(18), 2918–2925 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited