OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 1 — Jan. 2, 2012
  • pp: 7–16

Image continuity at different levels of zoom for fringe patterns

Mehrdad Abolbashari, Awad S. Gerges, Angela Davies, and Faramarz Farahi  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 7-16 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fringe patterns are raw output data from many measurement systems including laser interferometers and moiré systems. For instruments with a range of zoom levels to measure the object at different scales, a technique (algorithm) is needed to combine and/or compare data to obtain information at different levels of details. A technique to keep the continuity of output images both at different levels of zoom and within the same level of zoom is developed and demonstrated. Image registration is used to correlate images, find relative zoom values, and obtain shift between images in the lateral plane. Fringe patterns from a moiré system and a laser interferometer are used as images to be stitched and demonstrate the technique. Interferomteric fringes are used to find the required parameters to inter-relate locations and scale of the fringe patterns at different levels of zoom. The calculated parameters are scale and translation in both directions; these parameters make it possible to locate the coordinates of the region that the measurement system is zoomed in on, related to the area with lower magnification and relative locations of images within the same level of zoom. Results show that this technique is capable of finding the scale and shift parameters within the resolution of one pixel and therefore can restore continuity between images at different levels of zoom.

© 2011 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.4120) Instrumentation, measurement, and metrology : Moire' techniques
(100.3175) Image processing : Interferometric imaging

ToC Category:
Image Processing

Original Manuscript: September 28, 2011
Revised Manuscript: November 12, 2011
Manuscript Accepted: November 15, 2011
Published: December 19, 2011

Mehrdad Abolbashari, Awad S. Gerges, Angela Davies, and Faramarz Farahi, "Image continuity at different levels of zoom for fringe patterns," Opt. Express 20, 7-16 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972). [CrossRef]
  2. K. Creath, J. Schmit, and C. Wyant, “Optical Metrology of Diffuse Surfaces,” in Optical Shop Testing D. Malacara (John Wiley & Sons, Inc. Publications, 2007), pp. 756–807.
  3. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  4. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  5. R. J. Sanford and J. W. Dally, “A general method for determining mixed-mode stress intensity factors from isochromatic fringe patterns,” Eng. Fract. Mech. 11(4), 621–633 (1979). [CrossRef]
  6. A. E. Ennos, “Measurement of in-plane surface strain by hologram interferometry,” J. Phys. E Sci. Instrum. 1(7), 731–734 (1968). [CrossRef]
  7. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45(2), 304–317 (2007). [CrossRef]
  8. W. W. Macy., “Two-dimensional fringe-pattern analysis,” Appl. Opt. 22(23), 3898–3901 (1983). [CrossRef] [PubMed]
  9. M. Abolbashari, A. S. Gerges, A. Davies, and F. Farahi, “Image continuity at different levels of zoom for moiré techniques,” Proc. SPIE 7790, 77900S, 77900S-6 (2010). [CrossRef]
  10. G. E. Sommargren, “A new laser measurement system for precision metrology,” Precis. Eng. 9(4), 179–184 (1987). [CrossRef]
  11. M. Tanaka, T. Yamagami, and K. Nakayama, “Linear interpolation of periodic error in a heterodyne laser interferometer at subnanometer levels,” IEEE Trans. Instrum. Meas. 38(2), 552–554 (1989). [CrossRef]
  12. C. M. Wu, “Heterodyne interferometric system with subnanometer accuracy for measurement of straightness,” Appl. Opt. 43(19), 3812–3816 (2004). [CrossRef] [PubMed]
  13. K. J. Gåsvik, Optical Metrology (John Wiley & Sons, Ltd, 2002).
  14. C. A. Sciammarella, “The Moiré Method—A Review,” Exp. Mech. 19, 418–422 (1979).
  15. C. A. Walker, “A historical review of moiré interferometry,” Exp. Mech. 34(4), 281–299 (1994). [CrossRef]
  16. F. P. Chiang, “Moiré methods of strain analysis,” Exp. Mech. 22, 290–308 (1982).
  17. J. A. N. Buytaert and J. J. J. Dirckx, “Moiré profilometry using liquid crystals for projection and demodulation,” Opt. Express 16(1), 179–193 (2008). [CrossRef] [PubMed]
  18. L. H. Jin, Y. Otani, and T. Yoshizawa, “Shadow moiré profilometry by frequency sweeping,” Opt. Eng. 40(7), 1383 (2001). [CrossRef]
  19. Z. Xu, H. K. Taylor, D. S. Boning, S. F. Yoon, and K. Youcef-Toumi, “Large-area and high-resolution distortion measurement based on Moiré fringe method for hot embossing process,” Opt. Express 17(21), 18394–18407 (2009). [CrossRef] [PubMed]
  20. G. N. de Oliveira, M. E. de Oliveira, and P. A. M. dos Santos, “Dynamic moiré patterns for profilometry applications,” J. Phys.: Conf. Ser. 274, 012036 (2011). [CrossRef]
  21. A. A. Goshtasby, 2-D and 3-D Image Registration: for Medical, Remote Sensing, and Industrial Applications (John Wiley & Sons, Inc. Publications, 2005).
  22. G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging 17(4), 586–595 (1998). [CrossRef] [PubMed]
  23. S. Periaswamy and H. Farid, “Medical image registration with partial data,” Med. Image Anal. 10(3), 452–464 (2006). [CrossRef] [PubMed]
  24. J. Salvi, C. Matabosch, D. Fofi, and J. Forest, “A review of recent range image registration methods with accuracy evaluation,” Image Vis. Comput. 25(5), 578–596 (2007). [CrossRef]
  25. B. Zitová and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput. 21(11), 977–1000 (2003). [CrossRef]
  26. J. Modersitzki, Numerical Methods for Image Registration (Oxford University Press, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited