OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10701–10711

Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics

D. Sola, R. Balda, J.I. Peña, and J. Fernández  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10701-10711 (2012)
http://dx.doi.org/10.1364/OE.20.010701


View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we report the influence of the crystallization stage of the host matrix on the spectroscopic properties of Nd3+ ions in biocompatible glass-ceramic eutectic rods of composition 0.8CaSiO3-0.2Ca3(PO4)2 doped with 1 and 2 wt% of Nd2O3. The samples were obtained by the laser floating zone technique at different growth rates between 50 and 500 mm/h. The microstructural analysis shows that a growth rate increase or a rod diameter decrease leads the system to a structural arrangement from three (two crystalline and one amorphous) to two phases (one crystalline and one amorphous). Electron backscattering diffraction analysis shows the presence of Ca2SiO4 and apatite-like crystalline phases. Site-selective laser spectroscopy in the 4I9/24F3/2/4F5/2 transitions confirms that Nd3+ ions are incorporated in crystalline and amorphous phases in these glass-ceramic samples. In particular, the presence of Ca2SiO4 crystalline phase in the samples grown at low rates, which has an excellent in vitro bioactivity, can be unambiguously identified from the excitation spectra and lifetime measurements of the 4F3/2 state of Nd3+ ions.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6360) Spectroscopy : Spectroscopy, laser
(160.1435) Materials : Biomaterials

ToC Category:
Metrology

History
Original Manuscript: March 23, 2012
Revised Manuscript: April 17, 2012
Manuscript Accepted: April 17, 2012
Published: April 24, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
D. Sola, R. Balda, J.I. Peña, and J. Fernández, "Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics," Opt. Express 20, 10701-10711 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci.51(6), 711–809 (2006) (and references therein). [CrossRef]
  2. R. I. Merino, J. A. Pardo, J. I. Peña, G. F. de la Fuente, A. Larrea, and V. M. Orera, “Luminescence properties of ZrO2-CaO eutectic crystals with ordered lamellar microstructure activated with Er3+ ions,” Phys. Rev. B56(17), 10907–10915 (1997). [CrossRef]
  3. R. Balda, S. Garcia-Revilla, J. Fernández, R. I. Merino, J. I. Peña, and V. M. Orera, “Near infrared to visible upconversion of Er3+ in CaZrO3/CaSZ eutectic crystals with ordered lamellar microstructure,” J. Lumin.129(12), 1422–1427 (2009). [CrossRef]
  4. P. N. de Aza, F. Guitian, and S. de Aza, “Phase diagram of wollastonite-tricalcium phosphate,” J. Am. Ceram. Soc.78(6), 1653–1656 (1995). [CrossRef]
  5. P. N. De Aza, F. Guitián, and S. De Aza, “Bioeutectic: a new ceramic material for human bone replacement,” Biomaterials18(19), 1285–1291 (1997). [CrossRef] [PubMed]
  6. P. N. De Aza, F. Guitian, and S. de Aza, “A new bioactive material which transforms in situ into hydroxyapatite,” Acta Mater.46(7), 2541–2549 (1998). [CrossRef]
  7. M. Magallanes-Perdomo, P. Pena, P. N. De Aza, R. G. Carrodeguas, M. A. Rodríguez, X. Turrillas, S. De Aza, and A. H. De Aza, “Devitrification studies of wollastonite-tricalcium phosphate eutectic glass,” Acta Biomater.5(8), 3057–3066 (2009). [CrossRef] [PubMed]
  8. M. Magallanes-Perdomo, Z. B. Luklinska, A. H. De Aza, R. G. Carrodeguas, S. De Aza, and P. Pena, “Bone-like forming ability of apatite-wollastonite glass ceramic,” J. Eur. Ceram. Soc.31(9), 1549–1561 (2011). [CrossRef]
  9. C. Wang, Y. Xue, K. Lin, J. Lu, J. Chang, and J. Sun, “The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics,” Acta Biomater.8(1), 350–360 (2012). [PubMed]
  10. J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids298(1), 23–31 (2002). [CrossRef]
  11. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express17(6), 4382–4387 (2009). [CrossRef] [PubMed]
  12. R. Balda, R. I. Merino, J. I. Peña, V. M. Orera, and J. Fernández, “Laser spectroscopy of Nd3+ ions in glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” Opt. Mater.31(9), 1319–1322 (2009). [CrossRef]
  13. M. J. Weber, “Science and technology of laser glass,” J. Non-Cryst. Solids123(1-3), 208–222 (1990). [CrossRef]
  14. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/2→4I11/2 induced-emission cross section for Nd3+ on glass composition,” IEEE J. Quantum Electron.QE-12, 102–111 (1976). [CrossRef]
  15. Z. Gou, J. Chang, and W. Zhai, “Preparation and characterization of novel bioactive dicalcium silicate ceramics,” J. Eur. Ceram. Soc.25(9), 1507–1514 (2005). [CrossRef]
  16. D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3–Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc.31(7), 1211–1218 (2011). [CrossRef]
  17. F. J. Ester, D. Sola, and J. I. Peña, “Efectos térmicos inducidos durante el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Thermal stresses in the Al2O3-ZrO2 (Y2O3) eutectic composite during the growth by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio47, 352–357 (2008). [CrossRef]
  18. F. J. Ester and J. I. Peña, “Análisis de la zona fundida en el crecimiento del compuesto eutéctico Al2O3-ZrO2 (Y2O3) por fusión zonal con láser [Analysis of the molten zone in the growth of the Al2O3-ZrO2 (Y2O3) eutectic by the laser floating zone technique],” Bol. Soc. Esp. Ceram. Vidrio46, 240–246 (2007). [CrossRef]
  19. B. H. T. Chai, G. Loutts, J. Lefaucheur, X. X. Zhang, P. Hong, and M. Bass, “Comparison of Laser Performance of Nd-Doped YVO4, GdVO4, Ca5(PO4)3F, Sr5(PO4)3F and Sr5(VO4)3F,” in Advanced Solid-State Lasers, Vol. 20 of 1994 OSA Proceedings Series (Optical Society of America, 1994), pp. 41–52.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited