OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 10827–10832

Optically tunable chirped fiber Bragg grating

Zhen Li, Zhe Chen, V.K.S. Hsiao, Jie-Yuan Tang, Fuli Zhao, and Shao-Ji Jiang  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 10827-10832 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1000 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents an optically tunable chirped fiber Bragg grating (CFBG). The CFBG is obtained by a side-polished fiber Bragg grating (SPFBG) whose thickness of the residual cladding layer in the polished area (DRC) varies with position along the length of the grating, which is coated with a photoresponsive liquid crystal (LC) overlay. The reflection spectrum of the CFBG is tuned by refractive index (RI) modulation, which comes from the phase transition of the overlaid photoresponsive LC under ultraviolet (UV) light irradiation. The broadening in the reflection spectrum and corresponding shift in the central wavelength are observed with UV light irradiation density of 0.64mW/mm2. During the phase transition of the photoresponsive LC, the RI increase of the overlaid LC leads to the change of the CFBG reflection spectrum and the change is reversible and repeatable. The optically tunable CFBGs have potential use in optical DWDM system and an all-fiber telecommunication system.

© 2012 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.1150) Optical devices : All-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 21, 2012
Revised Manuscript: April 15, 2012
Manuscript Accepted: April 23, 2012
Published: April 25, 2012

Zhen Li, Zhe Chen, V.K.S. Hsiao, Jie-Yuan Tang, Fuli Zhao, and Shao-Ji Jiang, "Optically tunable chirped fiber Bragg grating," Opt. Express 20, 10827-10832 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Y. Dong, P. Shum, N. Q. Ngo, C. C. Chan, J. Ng, and C. Zhao, “Largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express11(22), 2970–2974 (2003). [CrossRef]
  2. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol.18(11), 1418–1432 (2000). [CrossRef]
  3. V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron.11(2), 408–416 (2005). [CrossRef]
  4. M. Pisco, S. Campopiano, A. Cutolo, and A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.18(24), 2551–2553 (2006). [CrossRef]
  5. N. Q. Ngo, D. Liu, S. C. Tjin, X. Y. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett.30(22), 2994–2996 (2005). [CrossRef]
  6. Y. G. Han, X. Y. Dong, J. H. Lee, and S. B. Lee, “Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift,” Opt. Lett.31(24), 3571–3573 (2006). [CrossRef]
  7. B. Dong, Q. D. Zhao, L. H. Liu, G. L. Huang, L. Jin, J. Zhou, and T. Q. Liao, “Tunable chirped fiber Bragg grating filter based on special strain function modulation and its application in fiber sensor,” J. Lightwave Technol.26(14), 2286–2290 (2008). [CrossRef]
  8. K. Rottwitt, M. J. Guy, A. Boskovic, D. U. Noske, J. R. Taylor, and R. Kashyap, “Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fiber Bragg gratings,” Electron. Lett.30(12), 995- (1994). [CrossRef]
  9. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett.19(23), 2027–2029 (1994). [CrossRef]
  10. S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett.29(1), 29–31 (2004). [CrossRef]
  11. J. L. Cruz, A. Diez, M. V. Andres, A. Segura, B. Ortega, and L. Dong, “Fiber Bragg grating tuned and chirped using magnetic fields,” Electron. Lett.33(3), 235–236 (1997). [CrossRef]
  12. B. J. Eggleton, J. A. Rogers, P. S. Westbrook, and T. A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett.11(7), 854–856 (1999). [CrossRef]
  13. Y. Y. Zhang, D. X. Wang, E. G. Dai, D. M. Wu, and A. S. Xu, “Electrically tunable dispersion compensator based on nonlinearly chirped fiber Bragg grating,” Microw. Opt. Technol. Lett.37(4), 288–292 (2003). [CrossRef]
  14. Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystal by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006). [CrossRef]
  15. V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid –crystal cell,” Opt. Express18(2), 1283–1288 (2010). [CrossRef]
  16. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express17(6), 4317–4323 (2009). [CrossRef]
  17. T. T. Alkeskjold, J. Lægsgaard, a. Bjarklev, D. S. Hermann, J. Anawati, J. Broeng, Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004). [CrossRef]
  18. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express13(7), 2358–2363 (2005). [CrossRef]
  19. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007). [CrossRef]
  20. V. K. S. Hsiao and C. Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express16, 12670–12676 (2008).
  21. V. K. S. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Y. Tang, “optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Opt. Express17(22), 19988–19994 (2009). [CrossRef]
  22. Z. Li, V. K. S. Hsiao, Z. Chen, J. Y. Tang, F. L. Zhao, and H. Z. Wang, “Optically tunable fiber Bragg grating,” IEEE Photon. Technol. Lett.22(15), 1123–1125 (2010). [CrossRef]
  23. C. D. Hussey and J. D. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electron. Lett.24(13), 805–807 (1988). [CrossRef]
  24. Z. Chen and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE (Advanced Sensor Technologies and Applications) 7157, 71570J/1–71570J/6 (2009).
  25. K. C. Byron, T. Bricheno, I. Bennion, and K. Sugden, “Fabrication of chirped Bragg gratings in photosenstive fiber,” Electron. Lett.29(18), 1659–1660 (1993). [CrossRef]
  26. J. L. Cruz, L. Dong, S. Barcelos, and L. Reekie, “Fiber Bragg gratings with various chirp profiles made in etched tapers,” Appl. Opt.35(34), 6781–6787 (1996). [CrossRef]
  27. H. B. Liu, H. Y. Liu, G. D. Peng, and T. W. Whitbread, “Tunalbe dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength,” IEEE Photon. Technol. Lett.17(2), 411–413 (2005). [CrossRef]
  28. S. M. Tseng and C. L. Chen, “Side-polished fibers,” Appl. Opt.31(18), 3438–3447 (1992). [CrossRef]
  29. X. Zhang, Y. H. Xia, Y. Q. Huang, and X. M. Ren, “Analysis of shift in Bragg wavelength of fiber Bragg gratings with finite cladding radius,” Acta Photonica Sinica32, 222–224 (2003).
  30. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1688 (1972). [CrossRef]
  31. A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystal detected by reflection-mode analysis,” J. Am. Chem. Soc.119(33), 7791–7796 (1997). [CrossRef]
  32. A. Yamaguchi, N. Nakagawa, K. Igarashi, T. Sekikawa, H. Nishioka, H. Asanuma, and M. Yamashita, “Photoisomerization dynamics study on cis-azobenzene derivative using ultraviolet-to-visible tunable femtosecond pulses,” Appl. Surf. Sci.255(24), 9864–9868 (2009). [CrossRef]
  33. T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem.13(9), 2037–2057 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited