OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11005–11013

Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film

Ekaterina Poutrina, Cristian Ciracì, Daniel J. Gauthier, and David R. Smith  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11005-11013 (2012)
http://dx.doi.org/10.1364/OE.20.011005


View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the process of four-wave mixing in an array of gold nanowires strongly coupled to a gold film. Using full-wave simulations, we perform a quantitative comparison of the four-wave mixing efficiency associated with a bare film and films with nanowire arrays. We find that the strongly localized surface plasmon resonances of the coupled nanowires provide an additional local field enhancement that, along with the delocalized surface plasmon of the film, produces an overall four-wave mixing efficiency enhancement of up to six orders of magnitude over that of the bare film. The enhancement occurs over a wide range of excitation angles. The film-coupled nanowire array is easily amenable to nanofabrication, and could find application as an ultra-compact component for integrated photonic and quantum optic systems.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 8, 2012
Revised Manuscript: April 19, 2012
Manuscript Accepted: April 20, 2012
Published: April 26, 2012

Citation
Ekaterina Poutrina, Cristian Ciracì, Daniel J. Gauthier, and David R. Smith, "Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film," Opt. Express 20, 11005-11013 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11005


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nature456, 81–84 (2008). [CrossRef] [PubMed]
  2. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics3, 581–585 (2009). [CrossRef]
  3. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gb/s regeneration applications,” Opt. Express19, 17158–17166 (2011). [CrossRef] [PubMed]
  4. H. Harutyunyan, S. Palomba, J. Renger, R. Quidant, and L. Novotny, “Nonlinear dark-field microscopy,” Nano Lett.10, 5076–5079 (2010). [CrossRef]
  5. W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-mixing microscopy,” Nano Lett.9, 2423–2426 (2009). [CrossRef] [PubMed]
  6. B. Haji-Saeed, S. K. Sengupta, M. Testorf, W. Goodhue, J. Khoury, C. L Woods, and J. Kierstead, “Real-time holographic deconvolution techniques for one-way image transmission through an aberrating medium: characterization, modeling, and measurements,” Appl. Opt.45, 3298–3306 (2006). [CrossRef] [PubMed]
  7. C. J. McKinstrie, S. Radic, and C. Xie, “Reduction of soliton phase jitter by in-line phase conjugation,” Opt. Lett.28, 1519–1521 (2003). [CrossRef] [PubMed]
  8. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “Real-time coherence holography,” Opt. Express18, 13782–13787 (2010). [CrossRef] [PubMed]
  9. T. Yajima and H. Souma, “Study of ultra-fast relaxation processes by resonant rayleigh-type optical mixing,” Phys. Rev. A17, 309–323 (1978). [CrossRef]
  10. W. Imajuku, A. Takada, and Y. Yamabayashi, “Inline coherent optical amplifier with noise figure lower than 3 dB quantum limit,” Electron. Lett.36, 63–64 (2000). [CrossRef]
  11. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006). [CrossRef] [PubMed]
  12. Y.-P. Huang, J. B. Altepeter, and P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A82, 043826 (2010). [CrossRef]
  13. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4, 557–560 (2010). [CrossRef]
  14. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev.128, 606–622 (1962). [CrossRef]
  15. R. W. Boyd, Nonlinear Optics, 2nd Ed. (Academic Press, San Diego, 2005).
  16. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82, 043828 (2010). [CrossRef]
  17. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B3, 1647–1655 (1986). [CrossRef]
  18. F. Hacke, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys. A47, 347–357 (1988). [CrossRef]
  19. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Dramatic localized electromagnetic enhancement in plasmon resonant nanowires,” Chem. Phys. Lett.341, 1–6 (2001). [CrossRef]
  20. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express8, 655–663 (2001). [CrossRef] [PubMed]
  21. D. S. Chemla, J. P. Heritage, P. F. Liao, and E. D. Isaacs, “Enhanced four-wave mixing from silver particles,” Phys. Rev. B27, 4553–4558 (1983). [CrossRef]
  22. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett.10, 511–513 (1985). [CrossRef] [PubMed]
  23. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B14, 1625–1631 (1997). [CrossRef]
  24. V. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films (Springer Tracts in Modern Physics, v.158, Springer, Berlin Heidelberg, 2000).
  25. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101, 056802 (2008). [CrossRef] [PubMed]
  26. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009). [CrossRef]
  27. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four-wave mixing,” Phys. Rev. Lett104, 046803 (2010). [CrossRef] [PubMed]
  28. X. Liu, Y. Wang, and E. O. Potma, “Surface-mediated four-wave mixing of nanostructures with counterpropagating surface plasmon polaritons,” Opt. Lett.36, 2348–2350 (2011). [CrossRef] [PubMed]
  29. C. Xue, H. Jiang, and H. Chen, “Nonlinear resonance-enhanced excitation of surface plasmon polaritons,” Opt. Lett.36, 855–857 (2011). [CrossRef] [PubMed]
  30. A. T. Georges, “Theory of nonlinear excitation of surface plasmon polaritons by four-wave mixing,” J. Opt. Soc. Am. B28, 1603–1606 (2011). [CrossRef]
  31. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett.4, 2209–2213 (2004). [CrossRef]
  32. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett.8, 2245–2252 (2008). [CrossRef] [PubMed]
  33. R. T. Hill, J. J. Mock, Y. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett.10, 4150–4154 (2010). [CrossRef] [PubMed]
  34. G. Lvque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett.31, 2750–2752 (2006). [CrossRef]
  35. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B74, 155435 (2006). [CrossRef]
  36. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B75, 235426 (2007). [CrossRef]
  37. A. Rueda, M. Stemmler, R. Bauer, Y. Fogel, K. M. Llen, and M. Kreiter, “Localized plasmons seen by propagating surface plasmons: unique determination of their dielectric response,” J. Phys. Chem. C112, 14801–14811 (2008). [CrossRef]
  38. Note that Eqs. (2) have been corrected from those published in [17].
  39. Comsol Multiphysics ( www.comsol.com ).
  40. G. P. Agrawal, Nonlinear Fiber Optics, 4th Ed. (Academic Press, San Diego, 2007).
  41. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  42. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev.48, 928–936 (1935). [CrossRef]
  43. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86, 1114–1117 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited