OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11031–11036

310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection

Ning Duan, Tsung-Yang Liow, Andy Eu-Jin Lim, Liang Ding, and G. Q. Lo  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11031-11036 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a normal incidence Ge/Si avalanche photodiode with separate-absorption-charge-multiplication (SACM) structure by selective epitaxial growth. By proper design of charge and multiplication layers and by optimizing the electric field distribution in the depletion region to eliminate germanium impact-ionization at high gain, a high responsivity of 12 A/W and a large gain-bandwidth product of 310 GHz have been achieved at 1550 nm.

© 2012 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(060.2330) Fiber optics and optical communications : Fiber optics communications
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:

Original Manuscript: January 10, 2012
Revised Manuscript: February 17, 2012
Manuscript Accepted: March 9, 2012
Published: April 27, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Ning Duan, Tsung-Yang Liow, Andy Eu-Jin Lim, Liang Ding, and G. Q. Lo, "310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection," Opt. Express 20, 11031-11036 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Nie, K. Anselm, C. Hu, S. Murtaza, B. Streetman, and J. Campbell, “High-speed resonant-cavity separate absorption and multiplication avalanche photodiodes with 130 GHz gain-bandwidth product,” Appl. Phys. Lett.70(2), 161–163 (1997). [CrossRef]
  2. N. Yasuoka, H. Kuwatsuka, M. Makiuchi, T. Uchida, and A. Yasaki, “Large multiplication-bandwidth products in APDs with a thin InP multiplication layer,” in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003 (IEEE/LEOS, 2003), Vol. 2, pp. 999–1000.
  3. J. Campbell, W. Tsang, G. Qua, and B. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron.24(3), 496–500 (1988). [CrossRef]
  4. A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High gain bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett.20(6), 455–457 (2008). [CrossRef]
  5. E. Yagyu, E. Ishimura, M. Nakaji, H. Itamoto, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Recent advances in AlInAs avalanche photodiodes,” Proc. OFC, 145–147 (2007).
  6. S. Demiguel, X. Zheng, N. Li, X. Li, J. Campbell, J. Decobert, N. Tscherptner, and A. Anselm, “High-responsivity and high-speed evanescently-coupled avalanche photodiodes,” Electron. Lett.39(25), 1848–1849 (2003). [CrossRef]
  7. Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H. D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 microm light detection,” Opt. Express16(13), 9365–9371 (2008). [CrossRef] [PubMed]
  8. X. Wang, L. Chen, W. Chen, H. Cui, Y. Hu, P. Cai, R. Yang, C. Hong, D. Pan, K. Ang, M. B. Yu, Q. Fang, and G. Q. Lo, "80 GHz bandwidth-gain-product Ge/Si avalanche photodetector by selective Ge growth," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMR3.
  9. R. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys.38(9), 3705–3714 (1967). [CrossRef]
  10. R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices19(6), 703–713 (1972). [CrossRef]
  11. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics3(1), 59–63 (2009). [CrossRef]
  12. L. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, “High-frequency performance of separate absorption grading, charge, and multiplication InP/InGaAs avalanche photodiodes,” IEEE Photon. Technol. Lett.5(6), 672–674 (1993). [CrossRef]
  13. N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs/InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron.41(4), 568–572 (2005). [CrossRef]
  14. C. Masini, L. Calace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Trans. Electron. Dev.48(6), 1092–1096 (2001). [CrossRef]
  15. Y. S. Shin, D. Lee, H. S. Lee, Y. J. Cho, C. J. Kim, and M. H. Jo, “Determination of the photocarrier diffusion length in intrinsic Ge nanowires,” Opt. Express19(7), 6119–6124 (2011). [CrossRef] [PubMed]
  16. Y. Hirota, S. Ando, and T. Ishibashi, “High-speed avalanche photodiode with a neutral absorption layer for 1.55 µm wavelength,” Jpn. J. Appl. Phys.43(No. 3A), L375–L377 (2004). [CrossRef]
  17. K. Shiba, T. Nakata, T. Takeuchi, K. Kasahara, and K. Makita, “Theoretical and experimental study on waveguide avalanche photodiodes with an undepleted absorption layer for 25-Gb/s operation,” IEEE J. Lightwave Technol.29(2), 153–161 (2011). [CrossRef]
  18. S. Sze, Physics of Semiconductor Devices (Wiley, 1981), Chap. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited