OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11241–11246

Continuously tunable delay line based on SOI tapered Bragg gratings

Ivano Giuntoni, David Stolarek, Dimitar I. Kroushkov, Jürgen Bruns, Lars Zimmermann, Bernd Tillack, and Klaus Petermann  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11241-11246 (2012)
http://dx.doi.org/10.1364/OE.20.011241


View Full Text Article

Enhanced HTML    Acrobat PDF (1561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The realization of an integrated delay line using tapered Bragg gratings in a drop-filter configuration is presented. The device is fabricated on silicon-on-insulator (SOI) rib waveguides using a Deep-UV 248 nm lithography. The continuous delay tunability is achieved using the thermo-optical effect, showing experimentally that a tuning range of 450 ps can be obtained with a tuning coefficient of −51 ps/°C. Furthermore the system performance is considered, showing that an operation at a bit rate of 25 Gbit/s can be achieved, and could be extended to 80 Gbit/s with the addition of a proper dispersion compensation.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4490) Optics in computing : Optical buffers
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 28, 2012
Revised Manuscript: April 20, 2012
Manuscript Accepted: April 23, 2012
Published: May 1, 2012

Citation
Ivano Giuntoni, David Stolarek, Dimitar I. Kroushkov, Jürgen Bruns, Lars Zimmermann, Bernd Tillack, and Klaus Petermann, "Continuously tunable delay line based on SOI tapered Bragg gratings," Opt. Express 20, 11241-11246 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100 Gb/s optical time-division multiplexed networks,” J. Lightwave Technol.20(12), 2086–2100 (2002). [CrossRef]
  2. C. R. Doerr, S. Chandrasekhar, P. J. Winzer, A. R. Chraplyvy, A. H. Gnauck, L. W. Stulz, R. Pafchek, and E. Burrows, “Simple multichannel optical equalizer mitigating intersymbol interference for 40-Gb/s nonreturn-to-zero signals,” J. Lightwave Technol.22(1), 249–256 (2004). [CrossRef]
  3. D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet switches,” J. Lightwave Technol.16(12), 2081–2094 (1998). [CrossRef]
  4. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” IEEE Photon. Technol. Lett.9(11), 1529–1531 (1997). [CrossRef]
  5. E. Choi, J. Na, S. Y. Ryu, G. Mudhana, and B. H. Lee, “All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line,” Opt. Express13(4), 1334–1345 (2005). [CrossRef] [PubMed]
  6. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, and D. Pastor, “Analysis of a microwave time delay line based on a perturbed uniform fiber Bragg grating operating at constant wavelength,” J. Lightwave Technol.18(3), 430–436 (2000). [CrossRef]
  7. M. Pisco, S. Campopiano, A. Cutolo, and A. Cusano, “Continuously variable optical delay line based on a chirped fiber Bragg grating,” IEEE Photon. Technol. Lett.18(24), 2551–2553 (2006). [CrossRef]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics1(1), 65–71 (2007). [CrossRef]
  9. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express16(12), 8395–8405 (2008). [CrossRef] [PubMed]
  10. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O’Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photon. J.2(2), 181–194 (2010). [CrossRef]
  11. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron.14(3), 691–705 (2008). [CrossRef]
  12. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron.16(1), 192–199 (2010). [CrossRef]
  13. S. Khan, M. A. Baghban, and S. Fathpour, “Electronically tunable silicon photonic delay lines,” Opt. Express19(12), 11780–11785 (2011). [CrossRef] [PubMed]
  14. S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C6(S1), S240–S243 (2009).
  15. I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express17(21), 18518–18524 (2009). [CrossRef] [PubMed]
  16. M. Kim, J. J. Ju, S. K. Park, M.-H. Lee, S. H. Kim, and K.-D. Lee, “Tailoring chirp characteristics of waveguide Bragg gratings using tapered core profiles,” IEEE Photon. Technol. Lett.18(22), 2413–2415 (2006). [CrossRef]
  17. I. Giuntoni, D. Stolarek, A. Gajda, J. Bruns, L. Zimmermann, B. Tillack, and K. Petermann, “Integrated drop-filter for dispersion compensation based on SOI rib waveguides,” in 37th European Conference and Exhibition on Optical Communication (ECOC), OSA Technical Digest (Optical Society of America, 2011), paper Th.12.LeSaleve.4.
  18. I. Giuntoni, D. Stolarek, H. Richter, S. Marschmeyer, J. Bauer, A. Gajda, J. Bruns, B. Tillack, K. Petermann, and L. Zimmermann, “Deep-UV technology for the fabrication of Bragg gratings on SOI rib waveguides,” IEEE Photon. Technol. Lett.21(24), 1894–1896 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited