OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11288–11315

Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber

Jeffrey G. Manni and Joseph W. Goodman  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11288-11315 (2012)
http://dx.doi.org/10.1364/OE.20.011288


View Full Text Article

Enhanced HTML    Acrobat PDF (1468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method based on quantitative theoretical analysis for achieving speckle contrast of 1% or less in images created by a full-frame laser projection display system. The method employs a stationary multimode optical fiber to achieve the effect of using a rapidly moving diffuser, but without moving the fiber or any other system component. When a suitably large projector lens is used, low-speckle illumination light delivered through the fiber acts in conjunction with wavelength diversity at the projection screen to achieve speckle contrast of 1% in viewed images. We describe in detail how the proposed method might be used with most types of high-power visible lasers being considered for large-venue displays. When used with visible laser diodes, the method may also be suitable for use in laser-based television.

© 2012 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.2945) Imaging systems : Illumination design

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: March 8, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: April 27, 2012
Published: May 2, 2012

Citation
Jeffrey G. Manni and Joseph W. Goodman, "Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber," Opt. Express 20, 11288-11315 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11288


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE4657, 131–137 (2002). [CrossRef]
  2. D. Kohler, W. L. Seitz, T. R. Loree, and S. D. Gardner, “Speckle reduction in pulsed-laser photographs,” Opt. Commun.12(1), 24–28 (1974). [CrossRef]
  3. B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik (Stuttg.)94, 132–136 (1993).
  4. B. Dingel and S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett.18(7), 549–551 (1993). [CrossRef] [PubMed]
  5. J. Kim, E. Kim, D. T. Miller, and T. E. Milner, “Speckle reduction in OCT with multimode source fiber,” Proc. SPIE5317, 246–250 (2004). [CrossRef]
  6. J. P. Parry, J. D. Shephard, J. D. C. Jones, and D. P. Hand, “Speckle contrast reduction in a large-core fiber delivering Q-switched pulses for fluid flow measurements,” Appl. Opt.45(18), 4209–4218 (2006). [CrossRef] [PubMed]
  7. M. Busker, Laser Projection: Coupling Optics, Light Management, and Speckle Reduction (VDM Verlag, 2008), pp. 115–117.
  8. R. Grasser, H. Shi, and T. A. Bartlett, “Speckle reduction in display systems that employ coherent light sources,” US Patent 2010/0079848 A1 (2010).
  9. B. Lippey, W. Beck, and I. Turner, “Despeckling apparatus and method,” US Patent 2011/0134510 A1.
  10. P. Janssens and K. Malfait, “Future prospects of high-end laser projectors,” Proc. SPIE7232, 20Y1–212 (2009).
  11. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. St. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett.16, 843–845 (2004). [CrossRef]
  12. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 244.
  13. S. Savovic, A. Djordjevich, B. Drljaca, and M. S. Kovacevic, “Comparison of methods for calculating coupling length in step-index optical fibers,” Acta Phys. Pol. A116, 652–654 (2009).
  14. S. Savović and A. Djordjevich, “Optical power flow in plastic-clad silica fibers,” Appl. Opt.41(36), 7588–7591 (2002). [CrossRef] [PubMed]
  15. S. Savović, A. Djordjevich, A. Simović, and B. Drljača, “Equilibrium mode distribution and steady-state distribution in 100-400 μm core step-index silica optical fibers,” Appl. Opt.50(21), 4170–4173 (2011). [CrossRef] [PubMed]
  16. S. Alaruri, A. Brewington, and G. Bijak, “Measurement of modal dispersion for a step index multimode optical fiber in the UV-visible region using a pulsed laser,” Appl. Spectrosc.48(2), 228–231 (1994). [CrossRef]
  17. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 246.
  18. B. Drljaca, S. Savovic, and A. Djordjevich, “Calculation of the impulse response of step-index plastic optical fibers using the time dependent power flow equation,” Acta Phys. Pol. A116, 658–660 (2009).
  19. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J.51, 1767–1783 (1972).
  20. R. Dandliker, A. Bertholds, and F. Maystre, “How modal noise in multimode fibers depends on source spectrum and fiber dispersion,” J. Lightwave Technol.3(1), 7–12 (1985). [CrossRef]
  21. P. Hlubina, “Spectral and dispersion analysis of laser sources and multimode fibers via the statistics of the intensity pattern,” J. Mod. Opt.41(5), 1001–1014 (1994). [CrossRef]
  22. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 214.
  23. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 221.
  24. G. Westheimer, “The eye as an optical instrument,” in Handbook of Perception, J. Thomas, ed. (Wiley & Sons, 1986), chap. 4.1–4.20.
  25. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 176.
  26. M. Busker, Laser Projection: Coupling Optics, Light Management, and Speckle Reduction (VDM Verlag, 2008), pp. 90–93.
  27. J. G. Manni and R. J. Martinsen, “Systems and methods for speckle reduction through bandwidth enhancement,” US 6,975,294 B2. Dec. 2005.
  28. V. Daneu, A. Sanchez, T. Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett.25(6), 405–407 (2000). [CrossRef] [PubMed]
  29. T. Y. Fan, “Laser beam combining for high-power high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005). [CrossRef]
  30. B. Chann and R. Huang, “Scalable wavelength beam combining systems and method,” US2011 / 0216792A1, Sept. 2011.
  31. E. C. Cheung, J. G. Ho, T. S. McComb, and S. Palese, “High density spectral beam combination with spatial chirp precompensation,” Opt. Express19(21), 20984–20990 (2011). [CrossRef] [PubMed]
  32. G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kranert, and C. Deter, “High-power laser projection displays,” Proc. SPIE4294, 36–46 (2001). [CrossRef]
  33. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press; 2007), Chap. 4.
  34. Q. Z. Wang, D. Ji, L. Yang, P. P. Ho, and R. R. Alfano, “Self-phase modulation in multimode optical fibers produced by moderately high-powered picosecond pulses,” Opt. Lett.14(11), 578–580 (1989). [CrossRef] [PubMed]
  35. J. Rothhardt, T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, T. Gottschall, T. V. Andersen, J. Limpert, and A. Tünnermann, “135 W average-power femtosecond pulses at 520 nm from a frequency-doubled fiber laser system,” Opt. Lett.36(3), 316–318 (2011). [CrossRef] [PubMed]
  36. J. Nakanishi, Y. Horiuchi, T. Yamada, O. Ishii, M. Yamazaki, M. Yoshida, and Y. Fujimoto, “High-power direct green laser oscillation of 598 mW in Pr(3+)-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes,” Opt. Lett.36(10), 1836–1838 (2011). [CrossRef] [PubMed]
  37. P. F. Moulton, “Three-color coherent light system,” US 5,740,190, April 14, 1998.
  38. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express13(12), 4786–4791 (2005). [CrossRef] [PubMed]
  39. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. Dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express16(13), 9671–9676 (2008). [CrossRef] [PubMed]
  40. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express14(15), 6800–6812 (2006). [CrossRef] [PubMed]
  41. B. F. Mansour, H. Anis, D. Zeidler, P. B. Corkum, and D. M. Villeneuve, “Generation of 11 fs pulses by using hollow-core gas-filled fibers at a 100 kHz repetition rate,” Opt. Lett.31(21), 3185–3187 (2006). [CrossRef] [PubMed]
  42. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  43. E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express14(17), 7914–7923 (2006). [CrossRef] [PubMed]
  44. M. Hirano and A. Morimoto, “Optical frequency comb generation using a quasi-velocity-matched Fabry-Perot phase modulator,” Opt. Rev.15(5), 224–229 (2008). [CrossRef]
  45. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generation for accurate optical frequency difference measurement,” IEEE J. Quantum Electron.29(10), 2693–2701 (1993). [CrossRef]
  46. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007), p. 179.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited