OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11321–11335

Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode

Chih-Yen Chen, Chieh Hsieh, Che-Hao Liao, Wei-Lun Chung, Hao-Tsung Chen, Wenyu Cao, Wen-Ming Chang, Horng-Shyang Chen, Yu-Feng Yao, Shao-Ying Ting, Yean-Woei Kiang, Chih-Chung (C. C.) Yang, and Xiaodong Hu  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11321-11335 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The counteraction between the increased carrier localization effect due to the change of composition nanostructure in the quantum wells (QWs), which is caused by the thermal annealing process, and the enhanced quantum-confined Stark effect in the QWs due to the increased piezoelectric field, which is caused by the increased p-type layer thickness, when the p-type layer is grown at a high temperature on the InGaN/GaN QWs of a high-indium light-emitting diode (LED) is demonstrated. Temperature- and excitation power-dependent photoluminescence (PL) measurements are performed on three groups of sample, including 1) the samples with both effects of thermal annealing and increased p-type thickness, 2) those only with the similar thermal annealing process, and 3) those with increased overgrowth thickness and minimized thermal annealing effect. From the comparisons of emission wavelength, internal quantum efficiency (IQE), spectral shift with increasing PL excitation level, and calibrated activation energy of carrier localization between various samples in the three groups, one can clearly see the individual effects of thermal annealing and increased p-type layer thickness. The counteraction leads to increased IQE and blue-shifted emission spectrum with increasing p-type thickness when the thickness is below a certain value (20-nm p-AlGaN plus 60-nm p-GaN under our growth conditions). Beyond this thickness, the IQE value decreases and the emission spectrum red shifts with increasing p-type thickness.

© 2012 OSA

OCIS Codes
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: March 19, 2012
Revised Manuscript: April 27, 2012
Manuscript Accepted: April 27, 2012
Published: May 2, 2012

Chih-Yen Chen, Chieh Hsieh, Che-Hao Liao, Wei-Lun Chung, Hao-Tsung Chen, Wenyu Cao, Wen-Ming Chang, Horng-Shyang Chen, Yu-Feng Yao, Shao-Ying Ting, Yean-Woei Kiang, Chih-Chung (C. C.) Yang, and Xiaodong Hu, "Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode," Opt. Express 20, 11321-11335 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73(14), 2006–2008 (1998). [CrossRef]
  2. P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, “Determination of photoluminescence mechanism in InGaN quantum wells,” Appl. Phys. Lett. 75(15), 2241–2243 (1999). [CrossRef]
  3. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys. 36(Part 2, No. 4A), L382–L385 (1997). [CrossRef]
  4. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998). [CrossRef]
  5. C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum well light-emitting diode of prestrained growth,” Appl. Phys. Lett. 91(5), 051121 (2007). [CrossRef]
  6. I. H. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69(18), 2701–2703 (1996). [CrossRef]
  7. Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N/In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997). [CrossRef]
  8. S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodoluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett. 71(16), 2346–2348 (1997). [CrossRef]
  9. L. K. Teles, J. Furthmuller, L. M. R. Scolfaro, J. R. Leite, and F. Bechstedt, “First-principles calculations of the thermodynamic and structural properties of strained InxGa1-xN and AlxGa1-xN alloys,” Phys. Rev. B 62(4), 2475–2485 (2000). [CrossRef]
  10. Y.-S. Lin, K.-J. Ma, C. Hsu, S.-W. Feng, Y.-C. Cheng, C.-C. Liao, C. C. Yang, C.-C. Chou, C.-M. Lee, and J.-I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 77(19), 2988–2990 (2000). [CrossRef]
  11. C. K. Choi, B. D. Little, Y. H. Kwon, J. B. Lam, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Femtosecond pump-probe spectroscopy and time-resolved photoluminescence of an InxGa1-xN/GaN double heterostructure,” Phys. Rev. B 63(19), 195302 (2001). [CrossRef]
  12. A. Kaneta, K. Okamoto, Y. Kawakami, S. Fujita, G. Marutsuki, Y. Narukawa, and T. Mukai, “Spatial and temporal luminescence dynamics in an InxGa1−xN single quantum well probed by near-field optical microscopy,” Appl. Phys. Lett. 81(23), 4353–4355 (2002). [CrossRef]
  13. Y.-S. Lin, K.-J. Ma, C. Hsu, Y.-Y. Chung, C.-W. Liu, S.-W. Feng, Y.-C. Cheng, C. C. Yang, M.-H. Mao, H.-W. Chuang, C.-T. Kuo, J.-S. Tsang, and T. E. Weirich, “Quasiregular quantum-dot-like structure formation with postgrowth thermal annealing of InGaN/GaN quantum wells,” Appl. Phys. Lett. 80(14), 2571–2573 (2002). [CrossRef]
  14. M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett. 85(11), 1961–1963 (2004). [CrossRef]
  15. S. W. Feng, T. Y. Tang, Y. C. Lu, S. J. Liu, E. C. Lin, C. C. Yang, K. J. Ma, C. H. Shen, L. C. Chen, J. Y. Lin, and H. X. Jiang, “Cluster size and composition variations in yellow and red light-emitting InGaN thin films upon thermal annealing,” J. Appl. Phys. 95(10), 5388–5396 (2004). [CrossRef]
  16. Y. C. Cheng, E. C. Lin, C. M. Wu, C. C. Yang, J.-R. Yang, A. Rosenauer, K.-J. Ma, S.-C. Shi, L. C. Chen, C.-C. Pan, and J.-I. Chyi, “Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions,” Appl. Phys. Lett. 84(14), 2506–2508 (2004). [CrossRef]
  17. H. C. Wang, S. J. Lin, Y. C. Lu, Y. C. Cheng, C. C. Yang, and K. J. Ma, “Carrier relaxation in InGaN/GaN quantum wells with nanometer-scale cluster structures,” Appl. Phys. Lett. 85(8), 1371–1373 (2004). [CrossRef]
  18. H. C. Wang, Y. C. Lu, C. Y. Chen, and C. C. Yang, “Carrier capture times of the localized states in an InGaN thin film with indium-rich nanocluster structures,” Appl. Phys. Lett. 89(1), 011906 (2006). [CrossRef]
  19. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B 60(12), 8849–8858 (1999). [CrossRef]
  20. F. Bernardini and V. Fiorentini, “Nonlinear macroscopic polarization in III-V nitride alloys,” Phys. Rev. B 64(8), 085207 (2001). [CrossRef]
  21. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature- dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998). [CrossRef]
  22. P. Ruterana, S. Kret, A. Vivet, G. Maciejewski, and P. Dluzewski, “Composition fluctuation in InGaN quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers,” J. Appl. Phys. 91(11), 8979–8985 (2002). [CrossRef]
  23. I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, J. H. Lim, S. J. Park, and Y. S. Kim, “Green light-emitting diodes with self-assembled In-rich InGaN quantum dots,” Appl. Phys. Lett. 91(13), 133105 (2007). [CrossRef]
  24. Y. H. Cho, Y. P. Sun, H. M. Kim, T. W. Kang, E.-K. Suh, H. J. Lee, R. J. Choi, and Y. B. Hahn, “High quantum efficiency of violet-blue to green light emission in InGaN quantum well structures grown by graded-indium-content profiling method,” Appl. Phys. Lett. 90(1), 011912 (2007). [CrossRef]
  25. Y.-Y. Chung, Y.-S. Lin, S.-W. Feng, Y.-C. Cheng, E.-C. Lin, C. C. Yang, K.-J. Ma, C. Hsu, H.-W. Chuang, C.-T. Kuo, and J.-S. Tsang, “Quantum-well-width dependencies of postgrowth thermal annealing effects of InGaN/GaN quantum wells,” J. Appl. Phys. 93(12), 9693–9696 (2003). [CrossRef]
  26. J. B. Limb, W. Lee, J. H. Ryou, D. Yoo, and R. D. Dupuis, “Comparison of GaN and In0.04Ga0.96N p-layers on the electrical and electroluminescence properties of green light emitting diodes,” J. Electron. Mater. 36(4), 426–430 (2007). [CrossRef]
  27. J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett. 92(10), 101113 (2008). [CrossRef]
  28. S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906–4908 (2003). [CrossRef]
  29. A. Sasaki, S. Shibakawa, Y. Kawakami, K. Nishizuka, Y. Narukawa, and T. Mukai, “Equation for internal quantum efficiency and its temperature dependence of luminescence, and application to InxGa1-xN/GaN multiple quantum wells,” Jpn. J. Appl. Phys. 45(11), 8719–8723 (2006). [CrossRef]
  30. E. M. Goldys, M. Godlewski, R. Langer, A. Barski, P. Bergman, and B. Monemar, “Analysis of the red optical emission in cubic GaN grown by molecular-beam epitaxy,” Phys. Rev. B 60(8), 5464–5469 (1999). [CrossRef]
  31. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999). [CrossRef]
  32. H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys. 88(3), 1525–1543 (2000). [CrossRef]
  33. X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells,” Appl. Phys. Lett. 93(17), 171113 (2008). [CrossRef]
  34. Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, “Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers,” Appl. Phys. Lett. 95(1), 011116 (2009). [CrossRef]
  35. S. Chiaria, E. Furno, M. Goano, and E. Bellotti, “Design criteria for near-ultraviolet GaN-based light-emitting diodes,” IEEE Trans. Electron Dev. 57(1), 60–70 (2010). [CrossRef]
  36. S. Fujita, M. Funato, D. C. Park, Y. Ikenaga, and S. Fujita, “Electrical characterization of MOVPE-grown p-type GaN:Mg against annealing temperature,” MRS Proc. 537, G6.31 (1998).
  37. F. Bernardini and V. Fiorentini, “Spontaneous versus piezoelectric polarization in III-V nitrides: Conceptual aspects and practical consequences,” Phys. Status Solidi B 216(1), 391–398 (1999). [CrossRef]
  38. C. H. Liao, C. Y. Chen, H. S. Chen, K. Y. Chen, W. L. Chung, W. M. Chang, J. J. Huang, Y. F. Yao, Y. W. Kiang, and C. C. Yang, “Emission efficiency dependence on the overgrown p-GaN thickness in a high-indium InGaN/GaN quantum-well light-emitting diode,” IEEE Photon. Technol. Lett. 23(23), 1757–1759 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited