OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11466–11477

Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting

Yoshiaki Nishijima, Lorenzo Rosa, and Saulius Juodkazis  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11466-11477 (2012)
http://dx.doi.org/10.1364/OE.20.011466


View Full Text Article

Enhanced HTML    Acrobat PDF (2763 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the localized surface plasmon resonance spectra of periodic square lattice arrays of gold nano-disks, and we describe numerically and experimentally the effect of disorder on resonance width, spectrum, and EM field enhancement in increasingly randomized patterns. The periodic structure shows a narrower and stronger extinction peak, conversely we observe an increase of up to (1–2)×102 times enhancement as the disorder is gradually introduced. This allows for simpler, lower resolution fabrication, cost-effective in light harvesting for solar cell and sensing applications. We show that dipole-dipole interactions contribute to diffract light parallel to the surface as a mean of long-range coupling between the nano-disks.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.4210) Scattering : Multiple scattering
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 9, 2012
Revised Manuscript: April 26, 2012
Manuscript Accepted: April 27, 2012
Published: May 4, 2012

Citation
Yoshiaki Nishijima, Lorenzo Rosa, and Saulius Juodkazis, "Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting," Opt. Express 20, 11466-11477 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B103, 4212–4217 (1999). [CrossRef]
  2. O. Shekhah, J. Liu, R. A. Fischer, and Ch. Woll, “MOF thin films: existing and future application,” Chem. Soc. Rev.40, 1081–1106 (2011). [CrossRef] [PubMed]
  3. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics2, 684–687 (2008). [CrossRef]
  4. W. Cai, A. P. Vasudev, and M. L. Brongersma, “Electrically controlled nonlinear generation of light with plasmonics,” Science, 333, 1720–1723 (2011). [CrossRef] [PubMed]
  5. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82, 2257–2298 (2010). [CrossRef]
  6. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012). [CrossRef]
  7. V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett.9, 3945–3948 (2009). [CrossRef] [PubMed]
  8. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121, 9932–9939 (1999). [CrossRef]
  9. F. Lordan, J. H. Rice, B. Jose, R. J. Forster, and T. E. Keyes, “Site selective surface enhanced Raman on nanostructured cavities,” Appl. Phys. Lett.99, 033104 (2011). [CrossRef]
  10. K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, “Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment,” J. Phys. Chem. C111, 4180–4184 (2007). [CrossRef]
  11. Y. Sawai, B. Takimoto, H. Nabika, K. Ajito, and K. Murakoshi, “Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering,” J. Am. Chem. Soc.129, 1658–1662 (2007). [CrossRef] [PubMed]
  12. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett.1, 2031–2036 (2010). [CrossRef]
  13. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon,” Chem. Lett.1, 2327–2333 (2010). [CrossRef]
  14. I. M. Monirul, K. Ueno, S. Juodkazis, Y. Yokota, and H. Misawa, “Development of interdigitated array electrodes with surface-enhanced raman scattering Functionality,” Anal. Sci.26, 13–18 (2010). [CrossRef]
  15. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99, 011107 (2011). [CrossRef]
  16. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics2, 230–233 (2008). [CrossRef]
  17. S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis, and P. Mulvaney, “Surface plasmon resonances in strongly coupled gold nanosphere chains from monomer to hexamer,” Nano Lett.11, 4180–4187 (2011). [CrossRef] [PubMed]
  18. A. Roberts and L. Lin, “Substrate and aspect-ratio effects in resonant nanoaperture arrays,” Opt. Mater. Express1, 480–488 (2011). [CrossRef]
  19. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater.20, 26–30 (2008). [CrossRef]
  20. T. Teranishi, M. Eguchi, M. Kanehara, and S. Gwo, “Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region,” J. Mater. Chem.21, 10238–10242 (2011). [CrossRef]
  21. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc.128, 14226–14227 (2006). [CrossRef] [PubMed]
  22. Y. K. Kim, A. J. Danner, J. J. Raftery, and K. D. Choquette, “Focused ion beam nanopatterning for optoelectronic device fabrication,” IEEE J. Sel. Top. Quantum. Electron.11, 1292–1298 (2005). [CrossRef]
  23. M. Hu, C. Novo, A. Funston, H. Wang, H. Staleva, S. Zou, P. Mulvaney, Y. Xia, and G. V. Hartland, “Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance,” J. Mater. Chem.18, 1949–1960 (2008). [CrossRef] [PubMed]
  24. S. Juodkazis and L. Rosa, “Surface defect mediated electron hopping between nanoparticles separated by a nano-gap,” Phys. Status Solidi - Rapid Res. Lett.10, 244–246 (2010). [CrossRef]
  25. W. Khunsin, B. Brian, J. Dorfmuller, M. Esslinger, R. Vogelgesang, C. Etrich, C. Rockstuhl, A. Dmitriev, and K. Kern, “Long-distance indirect excitation of nanoplasmonic resonances,” Nano Lett.11, 2765–2769 (2011). [CrossRef] [PubMed]
  26. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?” Phys. Rev. Lett.87, 167401 (2001). [CrossRef] [PubMed]
  27. T. Takasone, S. Juodkazis, Y. Kawagishi, A. Yamaguchi, S. Matsuo, H. Sakakibara, H. Nakayama, and H. Misawa, “Flexural rigidity of a single microtubule,” Jpn. J. Appl. Phys.41, 3015–3019 (2002). [CrossRef]
  28. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80, 4249–4252 (1998). [CrossRef]
  29. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Ausseneg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett.77, 132355, (2000). [CrossRef]
  30. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62, R16356–R16359 (2000). [CrossRef]
  31. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4724 (2000). [CrossRef] [PubMed]
  32. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett.21, 1099–1101, (1996). [CrossRef] [PubMed]
  33. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402 (2002). [CrossRef] [PubMed]
  34. G. V. Hartland, “Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism,” J. Chem. Phys.116, 8048–8056 (2002). [CrossRef]
  35. L. Rosa, K. Sun, and S. Juodkazis, “Sierpinski fractal plasmonic nanoantennas,” Phys. Status Solidi - Rapid Res. Lett.5, 175–177 (2011). [CrossRef]
  36. X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett.2012 (in press) [CrossRef] [PubMed]
  37. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 517 (2011). [CrossRef] [PubMed]
  38. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B6016389–16408 (1999). [CrossRef]
  39. S. Takeda, S. Hamada, R. Peretti, P. Viktorovitch, and M. Obara, “Order to disorder optical phase transition in random photonic crystals,” Appl. Phys. B10695–100 (2012). [CrossRef]
  40. Z. -L. Deng, Z. -H. Li, J. -W. Dong, and H. -Z. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics6, 507–514 (2011). [CrossRef]
  41. K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, and S. Juodkazis, “Photoelectrolysis of Water: Solar Hydrogen - Achievements and Perspectives,” Opt. Express18, A147–A160 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited