OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 10 — May. 7, 2012
  • pp: 11561–11573

Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2)

Ted A. Laurence, Jeff D. Bude, Sonny Ly, Nan Shen, and Michael D. Feit  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11561-11573 (2012)
http://dx.doi.org/10.1364/OE.20.011561


View Full Text Article

Enhanced HTML    Acrobat PDF (1578 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface laser damage limits the lifetime of optics for systems guiding high fluence pulses, particularly damage in silica optics used for inertial confinement fusion-class lasers (nanosecond-scale high energy pulses at 355 nm/3.5 eV). The density of damage precursors at low fluence has been measured using large beams (1-3 cm); higher fluences cannot be measured easily since the high density of resulting damage initiation sites results in clustering. We developed automated experiments and analysis that allow us to damage test thousands of sites with small beams (10-30 µm), and automatically image the test sites to determine if laser damage occurred. We developed an analysis method that provides a rigorous connection between these small beam damage test results of damage probability versus laser pulse energy and the large beam damage results of damage precursor densities versus fluence. We find that for uncoated and coated fused silica samples, the distribution of precursors nearly flattens at very high fluences, up to 150 J/cm2, providing important constraints on the physical distribution and nature of these precursors.

© 2012 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.2750) Materials : Glass and other amorphous materials
(160.4670) Materials : Optical materials
(160.6030) Materials : Silica

ToC Category:
Materials

History
Original Manuscript: March 29, 2012
Manuscript Accepted: April 17, 2012
Published: May 4, 2012

Citation
Ted A. Laurence, Jeff D. Bude, Sonny Ly, Nan Shen, and Michael D. Feit, "Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2)," Opt. Express 20, 11561-11573 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11561


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010). [CrossRef] [PubMed]
  2. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE7504, (2009).
  3. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011). [CrossRef]
  4. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett.94(15), 151114 (2009). [CrossRef]
  5. E. I. Moses, “The National Ignition Facility and the promise of inertial fusion energy,” Fusion Sci. Tech.60, 11–16 (2011).
  6. M. Dunne, E. I. Moses, P. Amendt, T. Anklam, A. Bayramian, E. Bliss, B. Debs, R. Deri, T. D. de la Rubia, B. El-Dasher, J. C. Farmer, D. Flowers, K. J. Kramer, L. Lagin, J. F. Latkowski, J. Lindl, W. Meier, R. Miles, G. A. Moses, S. Reyes, V. Roberts, R. Sawicki, M. Spaeth, and E. Storm, “Timely delivery of laser inertial fusion Energy (LIFE),” Fusion Sci. Tech.60, 19–27 (2011).
  7. C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011). [CrossRef] [PubMed]
  8. C. W. Carr, J. B. Trenholme, and M. L. Spaeth, “Effect of temporal pulse shape on optical damage,” Appl. Phys. Lett.90(4), 041110 (2007). [CrossRef]
  9. C. W. Carr, M. D. Feit, M. C. Nostrand, and J. J. Adams, “Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation,” Meas. Sci. Technol.17(7), 1958–1962 (2006). [CrossRef]
  10. M. D. Feit, A. M. Rubenchik, M. R. Kozlowski, F. Y. Genin, S. Schwartz, and L. M. Sheehan, “Extrapolation of damage test data to predict performance of large-area NIF optics at 355 nm,” Proc. SPIE3578, 1–9 (1999).
  11. D. A. Cross and C. W. Carr, “Analysis of 1ω bulk laser damage in KDP,” Appl. Opt.50(22), D7–D11 (2011). [CrossRef] [PubMed]
  12. S. Schwartz, M. D. Feit, M. R. Kozlowski, and R. P. Mouser, “Current 3ω large optic test procedures and data analysis for the quality assurance of National Ignition Facility optics,” Proc. SPIE3578, 314–321 (1999). [CrossRef]
  13. Z. M. Liao, M. L. Spaeth, K. Manes, J. J. Adams, and C. W. Carr, “Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model,” Opt. Lett.35(15), 2538–2540 (2010). [CrossRef] [PubMed]
  14. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J. C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum.78(10), 103105 (2007). [CrossRef] [PubMed]
  15. J. J. Adams, J. A. Jarboe, M. D. Feit, and R. P. Hackel, “Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(Phi)) results for unconditioned and sub-nanosecond laser-conditioned KD 2PO 4 crystals,” Proc. SPIE6720, 672014 (2007). [CrossRef]
  16. M. Loiseau, L. Lamaignere, R. Courchinoux, G. Raze, C. Sudre, M. Josse, T. Donval, and H. Bercegol, “Automatic damage test benches: From samples to large-aperture optical components,” Proc. SPIE5252, 412–422 (2004). [CrossRef]
  17. D. C. Ness and A. D. Streater, “Automated system for laser damage testing of coated optics,” Proc. SPIE5991, 59912B, 59912B-9 (2005). [CrossRef]
  18. J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2006). [CrossRef]
  19. M. C. Nostrand, T. L. Weiland, R. L. Luthi, J. L. Vickers, W. D. Sell, J. A. Stanley, J. Honig, J. Auerbach, R. P. Hackel, and P. J. Wegner, “A large aperture, high energy laser system for optics and optical component testing,” Proc. SPIE5273, 325–333 (2004). [CrossRef]
  20. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt.47(26), 4812–4832 (2008). [CrossRef] [PubMed]
  21. M. J. Matthews and M. D. Feit, “Effect of random clustering on surface damage density estimates,” Proc. SPIE6720, 67201J (2007). [CrossRef]
  22. L. B. Glebov, “Intrinsic laser-induced breakdown of silicate glasses,” Proc. SPIE4679, 321–331 (2002). [CrossRef]
  23. T. Suratwala, M. L. Hanna, and P. Whitman, “Effect of humidity during the coating of Stober silica sols,” J. Non-Cryst. Solids349, 368–376 (2004). [CrossRef]
  24. I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt.25(9), 1481–1483 (1986). [CrossRef] [PubMed]
  25. Y. R. Shen, “Self-focusing: experimental,” Prog. Quantum Electron.4, 1–34 (1975). [CrossRef]
  26. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron.4, 35–110 (1975). [CrossRef]
  27. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt.37(3), 546–550 (1998). [CrossRef] [PubMed]
  28. B. Efron and R. Tibshirani, An introduction to the bootstrap, Monographs on statistics and applied probability (Chapman & Hall, New York, 1993).
  29. T. A. Laurence and B. A. Chromy, “Efficient maximum likelihood estimator fitting of histograms,” Nat. Methods7(5), 338–339 (2010). [CrossRef] [PubMed]
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1992).
  31. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963). [CrossRef]
  32. D. S. Bunch, D. M. Gay, and R. E. Welsch, “Algorithm-717 subroutines for maximum-likelihood and quasi-likelihood estimation of parameters in nonlinear-regression models,” ACM Trans. Math. Softw.19(1), 109–130 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited