OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11625–11636

Regenerative polymeric bus architecture for board-level optical interconnects

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 11625-11636 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scalable multi-channel optical regenerative bus architecture based on the use of polymer waveguides is presented for the first time. The architecture offers high-speed interconnection between electrical cards allowing regenerative bus extension with multiple segments and therefore connection of an arbitrary number of cards onto the bus. In a proof-of-principle demonstration, a 4-channel 3-card polymeric bus module is designed and fabricated on standard FR4 substrates. Low insertion losses (≤ −15 dB) and low crosstalk values (< −30 dB) are achieved for the fabricated samples while better than ± 6 µm −1 dB alignment tolerances are obtained. 10 Gb/s data communication with a bit-error-rate (BER) lower than 10−12 is demonstrated for the first time between card interfaces on two different bus modules using a prototype 3R regenerator.

© 2012 OSA

OCIS Codes
(130.6750) Integrated optics : Systems
(200.4650) Optics in computing : Optical interconnects
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: February 22, 2012
Revised Manuscript: April 5, 2012
Manuscript Accepted: April 8, 2012
Published: May 7, 2012

N. Bamiedakis, A. Hashim, R. V. Penty, and I. H. White, "Regenerative polymeric bus architecture for board-level optical interconnects," Opt. Express 20, 11625-11636 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE88, 728–749 (2000).
  2. P. Pepeljugoski, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Ritter, and J. Kash, “Data center and high performance computing interconnects for 100 Gb/s and beyond,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC) 2007, 1–3.
  3. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in 36th European Conference and Exhibition on Optical Communication (ECOC), 2010, 1–14.
  4. M. Jarczynski, T. Seiler, and J. Jahns, “Integrated three-dimensional optical multilayer using free-space optics,” Appl. Opt.45(25), 6335–6341 (2006). [PubMed]
  5. H. Kuo, P. Rosenberg, R. Walmsley, S. Mathai, L. Kiyama, J. Straznicky, M. McLaren, M. Tan, and S.-Y. Wang, “Free-space optical links for board-to-board interconnects,” Appl. Phys., A Mater. Sci. Process.95, 955–965 (2009).
  6. D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: challenges and solutions,” Proc. IEEE88, 806–818 (2000).
  7. M. Schneider and T. Kuhner, “Optical interconnects on printed circuit boards using embedded optical fibers,” in Micro-Optics, VCSELs, and Photonic Interconnects II, (SPIE, 2006), 61850L–61858.
  8. I.-K. Cho, J.-H. Ryu, and M.-Y. Jeong, “Interchip link system using an optical wiring method,” Opt. Lett.33(16), 1881–1883 (2008). [PubMed]
  9. M. Ohmura and K. Salto, “High-density optical wiring technologies for optical backplane interconnection using downsized fibers and pre-installed fiber type multi optical connectors,” in Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC/NFEOC), 2006, 1–3.
  10. C. L. Schow, F. E. Doany, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. A. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “225 Gb/s bi-directional integrated optical PCB link,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2011, 1–3.
  11. X. Wang, J. Wei, W. Li, B. Hai, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lightwave Technol.26, 243–250 (2008).
  12. H.-H. Hsu, Y. Hirobe, and T. Ishigure, “Fabrication and inter-channel crosstalk analysis of polymer optical waveguides with W-shaped index profile for high-density optical interconnections,” Opt. Express19(15), 14018–14030 (2011). [PubMed]
  13. I. Papakonstantinou, D. R. Selviah, R. Pitwon, and D. Milward, “Low-Cost, Precision, Self-Alignment Technique for Coupling Laser and Photodiode Arrays to Polymer Waveguide Arrays on Multilayer PCBs,” IEEE Trans. Adv. Packag.31, 502–511 (2008).
  14. N. Bamiedakis, J. Beals IV, A. H. Hashim, R. V. Penty, and I. H. White, “Optical transceiver integrated on PCB using electro-optic connectors compatible with pick-and-place assembly technology,” in Optoelectronic Interconnects and Component Integration IX, (SPIE, 2010), 76070O–76011.
  15. A. L. Glebov, M. G. Lee, and K. Yokouchi, “Integration technologies for pluggable backplane optical interconnect systems,” Opt. Engineer.46, 015403 (2007).
  16. F. E. Doany, C. L. Schow, R. Budd, C. Baks, D. M. Kuchta, P. Pepeljugoski, J. A. Kash, F. Libsch, R. Dangel, F. Horst, and B. J. Offrein, “Chip-to-chip board-level optical data buses,” in Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC) 2008, 1–3.
  17. J. Beals, N. Bamiedakis, A. Wonfor, R. Penty, I. White, J. DeGroot, K. Hueston, T. Clapp, and M. Glick, “A terabit capacity passive polymer optical backplane based on a novel meshed waveguide architecture,” Appl. Phys., A Mater. Sci. Process.95, 983–988 (2009).
  18. X. Wang and R. T. Chen, “Fully embedded board level optical interconnects: from point-to-point interconnection to optical bus architecture,” in Photonics Packaging, Integration, and Interconnects VIII, (SPIE, 2008), 689903–689909.
  19. H. Xuliang, G. Kim, G. J. Lipovski, and R. T. Chen, “An optical centralized shared-bus architecture demonstrator for microprocessor-to-memory interconnects,” IEEE J. Sel. Top. Quantum Electron.9, 512–517 (2003).
  20. M. Tan, P. Rosenberg, J. Yeo, M. McLaren, S. Mathai, T. Morris, H. Kuo, J. Straznicky, N. Jouppi, and S.-Y. Wang, “A high-speed optical multi-drop bus for computer interconnections,” Appl. Phys. A95, 945–953 (2009).
  21. X. Dou, A. X. Wang, X. Lin, H. Haiyu, and R. T. Chen, “Optical bus waveguide metallic hard mold fabrication with opposite 45° micro-mirrors,” Proc. SPIE7607, 76070P (2010).
  22. M. Schneider, T. Kuhner, T. Alajoki, A. Tanskanen, and M. Karppinen, “Multi channel in-plane and out-of-plane couplers for optical printed circuit boards and optical backplanes,” in 59th Electronic Components and Technology Conference (ECTC) 2009, 1942–1947.
  23. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag.31, 759–767 (2008).
  24. D. Jubin, R. Dangel, N. Meier, F. Horst, T. Lamprecht, J. Weiss, R. Beyeler, B. J. Offrein, M. Halter, R. Stieger, and F. Betschon, “Polymer waveguide-based multilayer optical connector,” in Optoelectronic Interconnects and Component Integration IX, (SPIE, 2010), 76070K–76079.
  25. D. Childers, E. Childers, J. Graham, M. Hughes, D. Schoellner, and A. Ugolini, “Miniature detachable photonic turn connector for optical module interface,” in 61st IEEE Electronic Components and Technology Conference (ECTC) 2011, 1922–1927.
  26. A. Suzuki, T. Ishikawa, Y. Wakazono, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. i. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, and T. Mikawa, “Vertically pluggable and compact 10-Gb/s×12-channel optical modules with anisotropic conductive film for over 100-Gb/s optical interconnect systems,” J. Lightwave Technol.27, 3249–3258 (2009).
  27. L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, “120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides,” Proc. of the 57th Electronic Components & Technology Conference (ECTC), 1288–1293 (2007).
  28. R. C. A. Pitwon, K. Hopkins, K. Wang, D. R. Selviah, H. Baghsiahi, B. J. Offrein, R. Dangel, F. Horst, M. Halter, and M. Gmur, “Design and implementation of an electro-optical backplane with pluggable in-plane connectors,” in Optoelectronic Interconnects and Component Integration IX, (SPIE, 2010), 76070J–76012.
  29. N. Hendrickx, J. Van Erps, G. Van Steenberge, H. Thienpont, and P. Van Daele, “Laser ablated micromirrors for printed circuit board integrated optical interconnections,” IEEE Photon. Technol. Lett.19, 822–824 (2007).
  30. J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete out-of-plane coupling components for printed circuit board-level optical interconnections,” IEEE Photon. Technol. Lett.19, 1753–1755 (2007).
  31. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron.45, 415–424 (2009).
  32. P. Lafata and J. Vodrazka, “Application of passive optical network with optimized bus topology for local backbone data network,” Microw. Opt. Technol. Lett.53, 2351–2355 (2011).
  33. A. Hashim, N. Bamiedakis, R. V. Penty, and I. H. White, “Multimode 90°-crossings, combiners and splitters for a polymer-based on-board optical bus,” in Conference on Lasers and Electro-Optics (CLEO), 2012, 1–2.
  34. J. V. DeGroot, Jr., “Cost-effective optical waveguide components for printed circuit applications,” in Passive Components and Fiber-based Devices IV, (SPIE, 2007), 678116–678112.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited