OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11643–11651

Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser

Jimyung Kim, Akihiko Shinya, Kengo Nozaki, Hideaki Taniyama, Chin-Hui Chen, Tomonari Sato, Shinji Matsuo, and Masaya Notomi  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 11643-11651 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the spectral linewidth of a monolithic photonic crystal nanocavity laser. The nanocavity laser is based on a buried heterostructure cavity in which an ultra-small InGaAsP active region is embedded in an InP photonic crystal. Although it was difficult to achieve narrow linewidth operation in previously reported photonic crystal nanocavity lasers, we have successfully demonstrated a linewidth of 143.5 MHz, which is far narrower than the cold cavity linewidth and the narrowest value yet reported for nanolasers and photonic crystal lasers. The narrow linewidth is accompanied by a low power consumption and an ultrasmall footprint, thus making this particular laser especially suitable for use as an integrated multi-purpose sensor.

© 2012 OSA

OCIS Codes
(300.3700) Spectroscopy : Linewidth
(230.5298) Optical devices : Photonic crystals
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Photonic Crystals

Original Manuscript: March 22, 2012
Revised Manuscript: May 2, 2012
Manuscript Accepted: May 3, 2012
Published: May 7, 2012

Jimyung Kim, Akihiko Shinya, Kengo Nozaki, Hideaki Taniyama, Chin-Hui Chen, Tomonari Sato, Shinji Matsuo, and Masaya Notomi, "Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser," Opt. Express 20, 11643-11651 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Inoue and K. Ohtaka, eds., Photonic Crystal: Physics, Fabrication and Applications (Springer, 2004).
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004). [CrossRef] [PubMed]
  3. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  4. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  5. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron.3(3), 808–830 (1997). [CrossRef]
  6. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993), Chap. 6.
  7. P. Signoret, F. Marin, S. Viciani, G. Belleville, M. Myara, J. P. Tourrenc, B. Orsal, A. Plais, F. Gaborit, and J. Jacquet, “3.6-MHz linewidth 1.55- μm monomode vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.13(4), 269–271 (2001). [CrossRef]
  8. R. Shau, H. Halbritter, F. Riemenschneider, M. Ortsiefer, J. Rosskopf, G. Böhm, M. Maute, P. Meissner, and M.-C. Amann, “Linewidth of InP-based 1.55 μm VCSELs with buried tunnel junction,” Electron. Lett.39(24), 1728–1729 (2003). [CrossRef]
  9. N. M. Margalit, J. Piprek, S. Zhang, D. I. Babic, K. Streubel, R. P. Mirin, J. R. Wesselmann, J. E. Bowers, and E. L. Hu, “64 °C continuous-wave operation of 1.5 μm vertical-cavity laser,” IEEE J. Sel. Top. Quantum Electron.3(2), 359–365 (1997). [CrossRef]
  10. M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feeback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett.29(19), 1696–1697 (1993). [CrossRef]
  11. H. Bissessur, C. Starck, J.-Y. Emery, F. Pommereau, C. Duchemin, J.-G. Provost, J.-L. Beylat, and B. Fernier, “Very narrow-linewdith (70 kHz) 1.55 μm strained MQW DFB lasers,” Electron. Lett.28(11), 998–999 (1992). [CrossRef]
  12. W. Loh, F. J. O’Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011). [CrossRef]
  13. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29(10), 1093–1095 (2004). [CrossRef] [PubMed]
  14. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009). [CrossRef] [PubMed]
  15. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003). [CrossRef]
  16. M. L. Adams, M. Lončar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005). [CrossRef]
  17. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express14(13), 6308–6315 (2006). [CrossRef] [PubMed]
  18. M. Bagheri, M. H. Shih, Z.-J. Wei, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers,” IEEE Photon. Technol. Lett.18(10), 1161–1163 (2006). [CrossRef]
  19. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010). [CrossRef]
  20. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express16(23), 18657–18666 (2008). [CrossRef] [PubMed]
  21. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980). [CrossRef]
  22. J.-P. Tourrenc, P. Signoret, M. Myara, M. Bellon, J.-P. Perez, J.-M. Gosalbes, R. Alabedra, and B. Orsal, “Low-frequency FM-noise-induced lineshape: a theoretical and experimental approach,” IEEE J. Quantum Electron.41(4), 549–553 (2005). [CrossRef]
  23. A. Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons Inc., New York, 1989), Chap. 9.
  24. G. Liu, X. Jin, and S. L. Chuang, “Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique,” IEEE Photon. Technol. Lett.13(5), 430–432 (2001). [CrossRef]
  25. J. Kim and P. J. Delfyett, “Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers,” Opt. Express17(25), 22566–22570 (2009). [CrossRef] [PubMed]
  26. Y. Yamamoto, ed., Coherence, Amplification, and Quantum Effects in Semiconductor Lasers (John Wiley & Sons, Inc., 1991), Chap. 2.
  27. H. Yasaka, M. Fukuda, and T. Ikegami, “Current tailoring for lowering linewidth floor,” Electron. Lett.24(12), 760–761 (1988). [CrossRef]
  28. U. Krüger and K. Petermann, “Dependence of the linewidth of a semiconductor laser on the mode distribution,” IEEE J. Quantum Electron.26(12), 2058–2064 (1990). [CrossRef]
  29. G. R. Gray and G. P. Agrawal, “Effect of cross saturation on frequency fluctuations in a nearly single-mode semiconductor laser,” IEEE Photon. Technol. Lett.3(3), 204–206 (1991). [CrossRef]
  30. K. Kikuchi, “Effect of 1/f-Type FM noise on semiconductor-laser linewidth residual in high-power limit,” IEEE J. Quantum Electron.25(4), 684–688 (1989). [CrossRef]
  31. M. Fukuda, T. Hirono, T. Kurosaki, and F. Kano, “1/f noise behavior in semiconductor laser degradation,” IEEE Photon. Technol. Lett.5(10), 1165–1167 (1993). [CrossRef]
  32. F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron. Dev.41(11), 1926–1935 (1994). [CrossRef]
  33. A. Mutig, High Speed VCSELs for Optical Interconnects (Springer Thesis, 2011), Chap. 2.
  34. J. Shimizu, H. Yamada, S. Murata, A. Tomita, M. Kitamura, and A. Suzuki, “Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 µm InGaAs/InGaAsP MQW and strained-MQW lasers,” IEEE Photon. Technol. Lett.3(9), 773–776 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited