OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 11838–11854

Precise and rapid detection of optical activity for accumulative femtosecond spectroscopy

Andreas Steinbacher, Johannes Buback, Patrick Nuernberger, and Tobias Brixner  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 11838-11854 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present polarimetry, i.e. the detection of optical rotation of light polarization, in a configuration suitable for femtosecond spectroscopy. The polarimeter is based on common-path optical heterodyne interferometry and provides fast and highly sensitive detection of rotatory power. Femtosecond pump and polarimeter probe beams are integrated into a recently developed accumulative technique that further enhances sensitivity with respect to single-pulse methods. The high speed of the polarimeter affords optical rotation detection during the pump-pulse illumination period of a few seconds. We illustrate the concept on the photodissociation of the enantiomers of methyl p-tolyl sulfoxide. The sensitivity of rotatory detection, i.e. the minimum rotation angle that can be measured, is determined experimentally including all noise sources to be 0.10 milli-degrees for a measurement time of only one second and an interaction length of 250 μm. The suitability of the presented setup for femtosecond studies is demonstrated in a non-resonant two-photon photodissociation experiment.

© 2012 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(300.1030) Spectroscopy : Absorption
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:

Original Manuscript: March 1, 2012
Revised Manuscript: April 16, 2012
Manuscript Accepted: April 16, 2012
Published: May 10, 2012

Andreas Steinbacher, Johannes Buback, Patrick Nuernberger, and Tobias Brixner, "Precise and rapid detection of optical activity for accumulative femtosecond spectroscopy," Opt. Express 20, 11838-11854 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B23, 2418–2424 (2006). [CrossRef]
  2. L. Mangot, G. Taupier, M. Romeo, A. Boeglin, O. Cregut, and K. D. H. Dorkenoo, “Broadband transient dichroism spectroscopy in chiral molecules,” Opt. Lett.35, 381–383 (2010). [CrossRef] [PubMed]
  3. I. Eom, S. Ahn, H. Rhee, and M. Cho, “Broadband near UV to visible optical activity measurement using self-heterodyned method,” Opt. Express19, 10017–10028 (2011). [CrossRef] [PubMed]
  4. M. Bonmarin and J. Helbing, “Time-resolved vibrational circular dichroism and optical rotation with ultrashort laser pulses,” in Ultrafast Phenomena XVII, M. Chergui, D. M. Jonas, E. Riedle, R. W. Schoenlein, and A. J. Taylor, eds. (Oxford University Press, 2011), 862–864.
  5. P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality17, 421–437 (2005). [CrossRef] [PubMed]
  6. J. Helbing and M. Bonmarin, “Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses,” J. Chem. Phys.131, 174507 (2009). [CrossRef] [PubMed]
  7. M. Bonmarin and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality21, E298–E306 (2009). [CrossRef] [PubMed]
  8. X. Xie and J. D. Simon, “Protein conformational relaxation following photodissociation of CO from carbon-monoxymyoglobin: picosecond circular dichroism and absorption studies,” Biochemistry30, 3682–3692 (1991). [CrossRef] [PubMed]
  9. S. Milder, S. Bjorling, I. Kuntz, and D. Kliger, “Time-resolved circular dichroism and absorption studies of the photolysis reaction of (carbonmonoxy)myoglobin,” Biophys. J.53, 659–664 (1988). [CrossRef] [PubMed]
  10. J. W. Lewis, R. A. Goldbeck, D. S. Kliger, X. Xie, R. C. Dunn, and J. D. Simon, “Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems,” J. Phys. Chem.96, 5243–5254 (1992). [CrossRef]
  11. A. Trifonov, I. Buchvarov, A. Lohr, F. Würthner, and T. Fiebig, “Broadband femtosecond circular dichroism spectrometer with white-light polarization control,” Rev. Sci. Instrum.81, 043104 (2010). [CrossRef] [PubMed]
  12. J. Meyer-Ilse, D. Akimov, and B. Dietzek, “Ultrafast circular dichroism study of the ring opening of 7-dehydrocholesterol,” J. Phys. Chem. Lett.3, 182–185 (2012). [CrossRef]
  13. W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, “Structure and the optical rotatory dispersion of saturated ketones,” J. Am. Chem. Soc.83, 4013–4018 (1961). [CrossRef]
  14. G. Haenisch and G. Beier, “Ein Polarimeter zur Messung schneller chemischer Reaktionen,” Z. Anal. Chem.261, 280–286 (1972). [CrossRef]
  15. P. D. Rice, Y. Y. Shao, S. R. Erskine, T. G. Teague, and D. R. Bobbitt, “Specific rotation measurements from peak height data, with a Gaussian peak model,” Talanta36, 473–478 (1989). [CrossRef] [PubMed]
  16. D. R. Bobbitt and E. S. Yeung, “Improvements in detectabilities in polarimeters using high-frequency modulation,” Appl. Spectrosc.40, 407–410 (1986). [CrossRef]
  17. J. Lee and D. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Opt. Commun.256, 337–341 (2005). [CrossRef]
  18. C. Feng, Y. Huang, J. Chang, M. Chang, and C. Chou, “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Opt. Commun.141, 314–321 (1997). [CrossRef]
  19. J. Lin, K. Chen, and D. Su, “Improved method for measuring small optical rotation angle of chiral medium,” Opt. Commun.238, 113–118 (2004). [CrossRef]
  20. C. Chou, W. Kuo, T. Hsieh, and H. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser,” Opt. Commun.230, 259–266 (2004). [CrossRef]
  21. F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Product accumulation for ultrasensitive femtochemistry,” Opt. Lett.32, 3346–3348 (2007). [CrossRef] [PubMed]
  22. F. Langhojer, F. Dimler, G. Jung, and T. Brixner, “Ultrafast photoconversion of the green fluorescent protein studied by accumulative femtosecond spectroscopy,” Biophys. J.96, 2763–2770 (2009). [CrossRef] [PubMed]
  23. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am.31, 488–493 (1941). [CrossRef]
  24. R. C. Jones, “A new calculus for the treatment of optical systems. VII. Properties of the N-Matrices,” J. Opt. Soc. Am.38, 671–683 (1948). [CrossRef]
  25. Y. Guo and W. S. Jenks, “Photolysis of alkyl aryl sulfoxides: α-cleavage, hydrogen abstraction, and racemization,” J. Org. Chem.62, 857–864 (1997). [CrossRef]
  26. K. Mislow, M. M. Green, P. Laur, J. T. Melillo, T. Simmons, and A. L. Ternay, “Absolute configuration and optical rotatory power of sulfoxides and sulfinate esters,” J. Am. Chem. Soc.87, 1958–1976 (1965). [CrossRef]
  27. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge, 2009).
  28. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J.16, 1055–1069 (1976). [CrossRef] [PubMed]
  29. D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2009).
  30. Stanford Research Systems, “Digital Lock-In amplifiers SR810 and SR830,” Manual (1997).
  31. P. Král, I. Thanopulos, M. Shapiro, and D. Cohen, “Two-step enantio-selective optical switch,” Phys. Rev. Lett.90, 033001 (2003). [CrossRef] [PubMed]
  32. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9, 2470–2497 (2009). [CrossRef]
  33. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett.26, 557–559 (2001). [CrossRef]
  34. P. Nuernberger, R. Selle, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Polarization-shaped femtosecond laser pulses in the ultraviolet,” J. Opt. A11, 085202 (2009). [CrossRef]
  35. Rudolph Research, “The Autopol VI Automatic Polarimeter,” http://www.rudolphresearch.com (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited