OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12166–12170

Multi-contrast focal modulation microscopy for in vivo imaging of thick biological tissues

Nanguang Chen and Guangjun Gao  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12166-12170 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (938 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In vivo high resolution imaging of biological tissues is desirable for a wide range of biomedical applications. Recently focal modulation microscopy (FMM) has been developed and an imaging depth comparable to multi-photon microscopy (MPM) and optical coherence microscopy (OCM) has been achieved. Here we report the first focal modulation microscope that is capable of performing real-time fluorescence and scattering imaging simultaneously on thick biological tissues. A novel spatiotemporal phase modulator (STPM) has been designed and integrated into such a microscope to achieve high performances in terms of imaging speed, contrast, effective spatial resolution, signal to noise ratio, and compatibility with multiple excitation wavelengths.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.0110) Medical optics and biotechnology : Imaging systems
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 26, 2012
Revised Manuscript: May 9, 2012
Manuscript Accepted: May 10, 2012
Published: May 14, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Nanguang Chen and Guangjun Gao, "Multi-contrast focal modulation microscopy for in vivo imaging of thick biological tissues," Opt. Express 20, 12166-12170 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Ameer-Beg, P. R. Barber, R. J. Hodgkiss, R. J. Locke, R. G. Newman, G. M. Tozer, B. Vojnovic, and J. Wilson, “Application of multiphoton steady state and lifetime imaging to mapping of tumour vascular architecture in vivo,” Proc. SPIE4620, 85–95 (2002). [CrossRef]
  2. U. Dirnagl, U. Lindauer, A. Them, W. Pfister, K. M. Einhaupl, and A. Villringer, “Subsurface microscopic visualization of brain-tissue in-vivo—present, problems and prospects,” Micron24(6), 611–622 (1993). [CrossRef]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  5. W. M. Petroll, J. V. Jester, and H. D. Cavanagh, “In vivo confocal imaging: general principles and applications,” Scanning16(3), 131–149 (1994). [PubMed]
  6. P. Timpson, E. J. McGhee, and K. I. Anderson, “Imaging molecular dynamics in vivo—from cell biology to animal models,” J. Cell Sci.124(17), 2877–2890 (2011). [CrossRef] [PubMed]
  7. I. Tomo, S. Le Calvez, H. Maier, J. Boutet de Monvel, A. Fridberger, and M. Ulfendahl, “Imaging the living inner ear using intravital confocal microscopy,” Neuroimage35(4), 1393–1400 (2007). [CrossRef] [PubMed]
  8. N. Wuyts, J. C. Palauqui, G. Conejero, J. L. Verdeil, C. Granier, and C. Massonnet, “High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll,” Plant Methods6(1), 17 (2010), doi:, http://www.plantmethods.com/content/6/1/17 . [CrossRef] [PubMed]
  9. S. Khoshyomn, P. L. Penar, W. J. McBride, and D. J. Taatjes, “Four-dimensional analysis of human brain tumor spheroid invasion into fetal rat brain aggregates using confocal scanning laser microscopy,” J. Neurooncol.38(1), 1–10 (1998). [CrossRef] [PubMed]
  10. M. Gu and C. J. R. Sheppard, “Three-dimensional image-formation in confocal fluorescence microscopy,” Proc. SPIE1660, 188–198 (1992). [CrossRef]
  11. C. E. Miller, R. P. Thompson, M. R. Bigelow, G. Gittinger, T. C. Trusk, and D. Sedmera, “Confocal imaging of the embryonic heart: how deep?” Microsc. Microanal.11(03), 216–223 (2005). [CrossRef] [PubMed]
  12. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quantum Electron.2(4), 1017–1028 (1996). [CrossRef]
  13. N. G. Chen, C. H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express16(23), 18764–18769 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18764 . [CrossRef] [PubMed]
  14. S. P. Chong, C. H. Wong, C. J. R. Sheppard, and N. G. Chen, “Focal modulation microscopy: a theoretical study,” Opt. Lett.35(11), 1804–1806 (2010). [CrossRef] [PubMed]
  15. G. J. Gao, S. P. Chong, C. J. R. Sheppard, and N. G. Chen, “Considerations of aperture configuration in focal modulation microscopy from the standpoint of modulation depth,” J. Opt. Soc. Am. A28(4), 496–501 (2011). [CrossRef] [PubMed]
  16. S. P. Chong, C. H. Wong, K. F. Wong, C. J. R. Sheppard, and N. G. Chen, “High-speed focal modulation microscopy using acousto-optical modulators,” Biomed. Opt. Express1(3), 1026–1037 (2010), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-3-1026 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

Supplementary Material

» Media 1: AVI (1301 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited