OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12359–12365

Efficient low dispersion compact plasmonic-photonic coupler

T. P. H. Sidiropoulos, S. A. Maier, and R. F. Oulton  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12359-12365 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1373 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report efficient low dispersion light coupling into a silicon waveguide using an antenna consisting of two metallic nanoparticles. We find that strong multiple scattering between the nanoparticles dictates the coupling efficiency. We also explore directional coupling, by using different particles with a relative scattering phase, but find that optimum directionality corresponds to minimum efficiency. A dipole model highlights a subtle interplay between multiple scattering and directionality leading to a compromise allowing up to 30% transmission into a single direction. With a 500nm bandwidth near infrared telecoms bands, group delay dispersion is sufficiently low to faithfully couple pulses as short as 50fs.

© 2012 OSA

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(230.7380) Optical devices : Waveguides, channeled
(230.4555) Optical devices : Coupled resonators
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: February 22, 2012
Revised Manuscript: March 27, 2012
Manuscript Accepted: March 27, 2012
Published: May 16, 2012

T. P. H. Sidiropoulos, S. A. Maier, and R. F. Oulton, "Efficient low dispersion compact plasmonic-photonic coupler," Opt. Express 20, 12359-12365 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett.28, 1870–1872 (2003). [CrossRef] [PubMed]
  4. J. K. Butler, N.-H. Sun, G. A. Evans, L. Pang, and P. Congdon, “Grating-assisted coupling of light between semiconductor and glass waveguides,” J. Lightwave Technol.16, 1038–1048 (1998). [CrossRef]
  5. T. D. Happ, M. Kamp, and A. Forchel, “Photonic crystal tapers for ultracompact mode conversion,” Opt. Lett.26, 1102–1104 (2001). [CrossRef]
  6. C.-W. Liao, Y.-T. Yang, S.-W. Huang, and M.-C. Lee, “Fiber-core-matched three-dimensional adiabatic tapered couplers for integrated photonic devices,” J. Lightwave Technol.29, 770–774 (2011). [CrossRef]
  7. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett.36, 4278–4280 (2011). [CrossRef] [PubMed]
  8. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B78, 115115 (2008). [CrossRef]
  9. A. Ghoshal and P. G. Kik, “Frequency dependent power efficiency of a nanostructured surface plasmon coupler,” Phys. Status Solidi RRL4, 280–282 (2010). [CrossRef]
  10. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and lightmatter interactions with nanoplasmonics,” Small6, 2498–2507 (2010). [CrossRef] [PubMed]
  11. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett.91, 183901 (2003). [CrossRef] [PubMed]
  12. J.-P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express19, 18155–18163 (2011). [CrossRef] [PubMed]
  13. J. K. Day, O. Neumann, N. K. Grady, and N. J. Halas, “Nanostructure-mediated launching and detection of 2D surface plasmons,” ACS Nano4, 7566–7572 (2010). [CrossRef] [PubMed]
  14. S. A. Maier, “Effective mode volume of nanoscale plasmon cavities,” Opt. Quantum Electron.38, 257–267 (2006). [CrossRef]
  15. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon.4, 312–315 (2010). [CrossRef]
  16. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett.9, 327–331 (2009). [CrossRef]
  17. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92, 101501 (2008). [CrossRef]
  18. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun.2, 525 (2011). [CrossRef] [PubMed]
  19. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE79, 1505–1518 (1991). [CrossRef]
  20. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334, 333–337 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited