OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12563–12578

Ultrashort highly localized wavepackets

M. Bock, S. K. Das, and R. Grunwald  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12563-12578 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3643 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The recently introduced concept of radially non-oscillating, temporally stable ultrashort-pulsed Bessel-like beams we referred to as needle beams is generalized to a particular class of highly localized wavepackets (HLWs). Spatio-temporally quasi-nondiffracting pulses propagating along extended zones are shaped from Ti:sapphire oscillator radiation with a spatial light modulator and characterized with spatially resolved second order autocorrelation. Few-cycle wavepackets tailored to resemble circular disks, rings and bars of light represent the closest approximation of linear-optical light bullets known so far. By combining multiple HLWs, complex pulsed nondiffracting patterns are obtained.

© 2012 OSA

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

Original Manuscript: March 19, 2012
Revised Manuscript: May 4, 2012
Manuscript Accepted: May 4, 2012
Published: May 18, 2012

M. Bock, S. K. Das, and R. Grunwald, "Ultrashort highly localized wavepackets," Opt. Express 20, 12563-12578 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Saari, “How small a packet of photons can be made?” Laser Phys.16(4), 556–561 (2006). [CrossRef]
  2. P. Saari, “Photon Localization Revisited,” in: Quantum Optics and Laser Experiments Sergiy Lyagushin Ed. (InTech - Open Access Publisher, Croatia, 2012), 49–66.
  3. P. Saari, M. Menert, and H. Valtna, “Photon localization barrier can be overcome,” Opt. Commun.246(4-6), 445–450 (2005). [CrossRef]
  4. B. Piglosiewicz, D. Sadiq, M. Mascheck, S. Schmidt, M. Silies, P. Vasa, and C. Lienau, “Ultrasmall bullets of light-focusing few-cycle light pulses to the diffraction limit,” Opt. Express19(15), 14451–14463 (2011). [CrossRef] [PubMed]
  5. S. Trillo and W. Torruellas Eds, Spatial Dolitons (Springer, Berlin, 2001), pp. 73–74.
  6. Y. S, Kivshar and G. P. Agrawal, Optical solitons - From fibers to photonic crystals (Academic Press, Elsevier Science, Amsterdam, 2003), pp. 226–228.
  7. H. Sõnajalg, M. Rätsep, and P. Saari, “Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium,” Opt. Lett.22(5), 310–312 (1997). [CrossRef] [PubMed]
  8. P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett.91(9), 093904 (2003). [CrossRef] [PubMed]
  9. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater.5(2), 93–96 (2006). [CrossRef] [PubMed]
  10. J. A. Stratton, Electromagnetic Theory (McGraw Hill, New York, 1941), 356.
  11. J. Durnin, “Exact solution for nondiffracting beams I - The scalar theory,” J. Opt. Soc. Am. A4(4), 651–654 (1987). [CrossRef]
  12. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  13. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, eds., Localized Waves, Theory and Experiments (Wiley & Sons, New York, 2008).
  14. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151(4-6), 207–211 (1998). [CrossRef]
  15. P. Martelli, M. Tacca, A. Gatto, G. Moneta, and M. Martinelli, “Gouy phase shift in nondiffracting Bessel beams,” Opt. Express18(7), 7108–7120 (2010). [CrossRef] [PubMed]
  16. S. Chávez-Cerda, “A new approach to Bessel beams,” J. Mod. Opt.46, 923–930 (1999).
  17. K. Reivelt and P. Saari, “Bessel-Gauss pulse as an appropriate mathematical model for optically realizable localized waves,” Opt. Lett.29(11), 1176–1178 (2004). [CrossRef] [PubMed]
  18. K. Reivelt and P. Saari, “Experimental demonstration of realizability of optical focus wave modes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 056611 (2002). [CrossRef] [PubMed]
  19. G. Scott, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng.31(12), 2640–2646 (1992). [CrossRef]
  20. J. H. McLeod, “The axicon: A new type of optical element,” J. Opt. Soc. Am.44(8), 592–597 (1954). [CrossRef]
  21. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt.27(19), 3959–3962 (1988). [CrossRef] [PubMed]
  22. J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett.13(2), 79–80 (1988). [CrossRef] [PubMed]
  23. P. L. Overfelt and C. S. Kenney, “Comparison of the propagation characteristics of Bessel, Bessel-Gauss, and Gaussian beams diffracted by a circular aperture,” J. Opt. Soc. Am. A8(5), 732–745 (1991). [CrossRef]
  24. R. M. Herman and T. A. Wiggins, “Bessel-like beams modulated by arbitrary radial functions,” J. Opt. Soc. Am. A17(6), 1021–1032 (2000). [CrossRef] [PubMed]
  25. R. M. Herman and T. A. Wiggins, “Apodization of diffractionless beams,” Appl. Opt.31(28), 5913–5915 (1992). [CrossRef] [PubMed]
  26. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun.64(6), 491–495 (1987). [CrossRef]
  27. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett.25(4), 191–193 (2000). [CrossRef] [PubMed]
  28. P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett.79(21), 4135–4138 (1997). [CrossRef]
  29. R. Grunwald, U. Griebner, U. Neumann, A. Kummrow, E. T. J. Nibbering, M. Piché, G. Rousseau, M. Fortin, and V. Kebbel, “Generation of ultrashort-pulse nondiffracting beams and X-waves with thin-film axicons,” in: M. Murnane, N. F. Scherer, and A. M. Weiner (Eds.), Ultrafast Phenomena XIII (Springer-Verlag, New York, 2002) 247–249.
  30. R. Grunwald, V. Kebbel, U. Griebner, U. Neumann, A. Kummrow, M. Rini, E. T. J. Nibbering, M. Piché, G. Rousseau, and M. Fortin, “Generation and characterization of spatially and temporally localized few-cycle optical wavepackets,” Phys. Rev. A67(6), 063820 (2003). [CrossRef]
  31. J. Y. Lu and J. F. Greenleaf, “Nondiffracting X waves. Exact solutions to free space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(1), 19–31 (1992). [CrossRef] [PubMed]
  32. J. Y. Lu and J. F. Greenleaf, “Experimental verification of nondiffracting X waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control39(3), 441–446 (1992). [CrossRef] [PubMed]
  33. M. Zamboni-Rached, E. Recami, and H. E. Hernández-Figueroa, “New localized Superluminal solutions to the wave equations with finite total energies and arbitrary frequencies,” Eur. Phys. J. D21(2), 217–228 (2002). [CrossRef]
  34. M. Zamboni-Rached, E. Recami, and H. E. Hernández-Figueroa, “Theory of 'frozen waves': modeling the shape of stationary wave fields,” J. Opt. Soc. Am. A22, 2465–2475 (2005).
  35. M. Z. Rached and E. Recami, “Subluminal wave bullets: Exact localized subluminal solutions to the wave equations,” Phys. Rev. A77(3), 033824 (2008). [CrossRef]
  36. M. Zamboni-Rached, “Unidirectional decomposition method for obtaining exact localized wave solutions totally free of backward components,” Phys. Rev. A79(1), 013816 (2009). [CrossRef]
  37. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics4(2), 103–106 (2010). [CrossRef]
  38. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett.105(25), 253901 (2010). [CrossRef] [PubMed]
  39. R. Grunwald, M. Bock, V. Kebbel, S. Huferath, U. Neumann, G. Steinmeyer, G. Stibenz, J.-L. Néron, and M. Piché, “Ultrashort-pulsed truncated polychromatic Bessel-Gauss beams,” Opt. Express16(2), 1077–1089 (2008). [CrossRef] [PubMed]
  40. R. Grunwald, Thin-film microoptics - new frontiers of spatio-temporal beam shaping (Elsevier, Amsterdam, 2007).
  41. M. Bock, S. K. Das, and R. Grunwald, “Programmable ultrashort-pulsed flying images,” Opt. Express17(9), 7465–7478 (2009). [CrossRef] [PubMed]
  42. P. Sprangle and B. Hafizi, “Comment on nondiffracting beams,” Phys. Rev. Lett.66(6), 837 (1991). [CrossRef] [PubMed]
  43. J. Durnin, J. J. Miceli, and J. H. Eberly, “Durnin, Miceli, and Eberly Reply,” Phys. Rev. Lett.66(6), 838 (1991). [CrossRef] [PubMed]
  44. M. Mansuripur, “The uncertainty principle in classical optics,” Opt. & Photon. News, Jan. 2002, 44–48 (2002).
  45. M. J. Bastiaans, “Uncertainty principle and informational entropy for partially coherent light,” J. Opt. Soc. Am. A3(8), 1243–1246 (1986). [CrossRef]
  46. P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett.79(21), 4135–4138 (1997). [CrossRef]
  47. A. Siegman, “New developments in laser resonators,” Proc. SPIE1224, 2–14 (1990). [CrossRef]
  48. R. Borghi and M. Santarsiero, “M2 factor of Bessel-Gauss beams,” Opt. Lett.22(5), 262–264 (1997). [CrossRef] [PubMed]
  49. R. M. Herman and T. A. Wiggins, “Rayleigh range and the M2 factor for Bessel-Gauss beams,” Appl. Opt.37(16), 3398–3400 (1998). [CrossRef] [PubMed]
  50. S.-A. Amarande, “Beam propagation factor and the kurtosis parameter of flattened Gaussian beams,” Opt. Commun.129, 311–317 (1996).
  51. R. Grunwald and M. Bock, “Spatio-spectral analysis and encoding of ultrashort pulses with higher-order statistical moments,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThM2.
  52. M. Bock, S. K. Das, and R. Grunwald, “Adaptive shaping of complex pulsed nondiffracting light fields,” Proc. SPIE7716, 7950–7958 (2011).
  53. Z. Mei and D. Zhao, “Controllable dark-hollow beams and their propagation characteristics,” J. Opt. Soc. Am. A22(9), 1898–1902 (2005). [CrossRef] [PubMed]
  54. G. Rousseau, N. McCarthy, and M. Pichãé, “Description of pulse propagation in a dispersive medium by use of a pulse quality factor,” Opt. Lett.27(18), 1649–1651 (2002). [CrossRef] [PubMed]
  55. M. Piché and R. Grunwald, private communication. In the discussion, the product of M2 and P2 was considered to be used to describe the spatio-temporal beam properties of pulsed Bessel beams.
  56. B. Salik, J. Rosen, and A. Yariv, “Nondiffracting images under coherent illumination,” Opt. Lett.20(17), 1743–1745 (1995). [CrossRef] [PubMed]
  57. R. Grunwald, S. Huferath, M. Bock, U. Neumann, and S. Langer, “Angular tolerance of Shack-Hartmann wavefront sensors with microaxicons,” Opt. Lett.32(11), 1533–1535 (2007). [CrossRef] [PubMed]
  58. R. Grunwald, U. Neumann, U. Griebner, K. Reimann, G. Steinmeyer, and V. Kebbel, “Ultrashort-pulse wave-front autocorrelation,” Opt. Lett.28(23), 2399–2401 (2003). [CrossRef] [PubMed]
  59. M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Börner, and R. Grunwald, “Reconfigurable wavefront sensor for ultrashort pulses,” Opt. Lett.37(7), 1154–1156 (2012). [CrossRef] [PubMed]
  60. R. Grunwald and M. Bock, “Spatially encoded localized wavepackets for ultrafast optical data transfer,” JEOS:RP (submitted to).
  61. M. Bock, S. K. Das, R. Grunwald, S. Osten, P. Staudt, and G. Stibenz, “Spectral and temporal response of liquid-crystal-on-silicon spatial light modulators,” Appl. Phys. Lett.92(15), 151105 (2008). [CrossRef]
  62. I. Golub, “Fresnel axicon,” Opt. Lett.31(12), 1890–1892 (2006). [CrossRef] [PubMed]
  63. R. Grunwald and M. Bock, “Programmable microoptics for ultrashort pulses,” Proc. SPIE7716, 77160P, 77160P-8 (2010). [CrossRef]
  64. M. Bouafia, A. Bencheikh, L. Bouamama, and H. Weber, “M2 quality factor as a key for mastering laser beam propagation,” Proc. SPIE5456, 130–140 (2004). [CrossRef]
  65. R. Grunwald and M. Bock, “Programmable micro-optics for ultrashort pulses,” SPIE Newsroom (2010). http://spie.org/x39625.xml?highlight=x2422&ArticleID=x39625 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (28150 KB)     
» Media 2: AVI (25777 KB)     
» Media 3: AVI (14697 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited