OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 11 — May. 21, 2012
  • pp: 12610–12621

Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays

Lei Zhang, Chung Y. Chan, Jia Li, and Hock C. Ong  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12610-12621 (2012)
http://dx.doi.org/10.1364/OE.20.012610


View Full Text Article

Enhanced HTML    Acrobat PDF (2063 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have rationally designed two-dimensional Au and Ag hole arrays for high performing surface plasmon resonance (SPR) sensing. The figure-of-merit (FOM), which is defined as sensitivity/linewidth, is found to be highly geometry-dependent. For sensitivity, we find it is equal to the period of array when exciting low order surface plasmon modes at low incident angle. Therefore, increasing period improves sensitivity. On the other hand, narrow linewidth can be obtained from small hole size so that the radiative decay loss is minimized. By using a pair of orthogonally oriented polarizer and analyzer, the signal-to-noise ratio (SNR) can be greatly enhanced due to the elimination of the nonresonant reflection background. As a proof of our strategy, we have obtained FOM larger than 100/RIU and SNR higher than 110 from Au arrays. Our results show the importance of understanding the basic properties of surface plasmon polaritons in order to systematically optimize the performance of the plasmonic system for a given application.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Sensors

History
Original Manuscript: February 7, 2012
Revised Manuscript: May 3, 2012
Manuscript Accepted: May 5, 2012
Published: May 18, 2012

Citation
Lei Zhang, Chung Y. Chan, Jia Li, and Hock C. Ong, "Rational design of high performance surface plasmon resonance sensors based on two-dimensional metallic hole arrays," Opt. Express 20, 12610-12621 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-11-12610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. C. Le Ru and P. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier Science, 2008).
  3. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  5. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  6. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).
  7. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  8. M. A. Otte, B. Sepúlveda, W. H. Ni, J. P. Juste, L. M. Liz-Marzán, and L. M. Lechuga, “Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing,” ACS Nano4(1), 349–357 (2010). [CrossRef] [PubMed]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  10. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev.108(2), 494–521 (2008). [CrossRef] [PubMed]
  11. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res.41(8), 1049–1057 (2008). [CrossRef] [PubMed]
  12. J. Li, H. Iu, W. C. Luk, J. T. K. Wan, and H. C. Ong, “Studies of the plasmonic properties of two-dimensional metallic nanobottle arrays,” Appl. Phys. Lett.92(21), 213106 (2008). [CrossRef]
  13. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett.91(12), 123112 (2007). [CrossRef]
  14. D. Y. Lei, J. Li, A. I. Fernández-Domínguez, H. C. Ong, and S. A. Maier, “Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays,” ACS Nano4(1), 432–438 (2010). [CrossRef] [PubMed]
  15. J. Li, H. Iu, D. Y. Lei, J. T. K. Wan, J. B. Xu, H. P. Ho, M. Y. Waye, and H. C. Ong, “Dependence of surface plasmon lifetimes on the hole size in two-dimensional metallic arrays,” Appl. Phys. Lett.94(18), 183112 (2009). [CrossRef]
  16. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun.225(4-6), 331–336 (2003). [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  18. J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett.94(3), 033101 (2009). [CrossRef]
  19. S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, “Surface modes on nanostructured metallic surfaces,” Phys. Rev. B79(16), 165405 (2009). [CrossRef]
  20. M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B77(11), 115437 (2008). [CrossRef]
  21. E. Hecht, Optics, 4th ed. (Addison Wesley, San Fransisco, C.A., 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited