OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12742–12751

Cavity optoelectromechanical regenerative amplification

Michael A. Taylor, Alex Szorkovszky, Joachim Knittel, Kwan H. Lee, Terry G. McRae, and Warwick P. Bowen  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 12742-12751 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1003 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cavity optoelectromechanical regenerative amplification is demonstrated. An optical cavity enhances mechanical transduction, allowing sensitive measurement even for heavy oscillators. A 27.3 MHz mechanical mode of a microtoroid was linewidth narrowed to 6.6 ± 1.4 mHz, 30 times smaller than previously achieved with radiation pressure driving in such a system. These results may have applications in areas such as ultrasensitive optomechanical mass spectroscopy.

© 2012 OSA

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(140.3948) Lasers and laser optics : Microcavity devices
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optical Devices

Original Manuscript: March 6, 2012
Revised Manuscript: May 9, 2012
Manuscript Accepted: May 10, 2012
Published: May 22, 2012

Michael A. Taylor, Alex Szorkovszky, Joachim Knittel, Kwan H. Lee, Terry G. McRae, and Warwick P. Bowen, "Cavity optoelectromechanical regenerative amplification," Opt. Express 20, 12742-12751 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature430, 329–332 (2004). [CrossRef] [PubMed]
  2. A. Cleland and M. Roukes, “A nanometre-scale mechanical electrometer,” Nature392, 160–162 (1998). [CrossRef]
  3. F. G. Major, The Quantum Beat: Principles and Applications of Atomic Clocks (Springer, 1998).
  4. K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol.3, 533–537 (2008). [CrossRef] [PubMed]
  5. Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes, “Surface adsorbate fluctuations and noise in nanoelectromechanical systems,” Nano Lett.11, 1753–1759 (2011). [CrossRef] [PubMed]
  6. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol.4, 820–823 (2009). [CrossRef] [PubMed]
  7. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics2, 627–633 (2008). [CrossRef]
  8. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics4, 236–242 (2010). [CrossRef]
  9. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys.13, 013017 (2011). [CrossRef]
  10. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys.5, 909–914 (2009). [CrossRef]
  11. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, “High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators,” New J. Phys.10, 095015 (2008). [CrossRef]
  12. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip opto-nanomechanical transducer for ultra-sensitive force measurements,” arXiv:1112.0797v1 (2011).
  13. M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschr. Phys.57, 1153–1162 (2009). [CrossRef]
  14. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett.91, 130401 (2003). [CrossRef] [PubMed]
  15. L. Haiberger, M. Weingran, and S. Schiller, “Highly sensitive silicon crystal torque sensor operating at the thermal noise limit,” Rev. Sci. Instrum.78, 025101 (2007). [CrossRef] [PubMed]
  16. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett.95, 033901 (2005). [CrossRef] [PubMed]
  17. A. Mirzaei and A. A. Abidi, “The spectrum of a noisy free-running oscillator explained by random frequency pulling,” IEEE Trans. Circuits Syst., I: Regul. Pap.57, 642–653 (2010). [CrossRef]
  18. K. H. Lee, T. G. McRae, G. I. Harris, J. Knittel, and W. P. Bowen, “Cooling and control of a cavity optoelectromechanical system,” Phys. Rev. Lett.104, 123604–123607 (2010). [CrossRef] [PubMed]
  19. T. G. McRae, K. H. Lee, G. I. Harris, J. Knittel, and W. P. Bowen, “Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction,” Phys. Rev. A82, 23825–23831 (2010). [CrossRef]
  20. S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechanical resonators,” Opt. Express19, 9020–9026 (2011). [CrossRef] [PubMed]
  21. W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sens. Actuators A, Phys.102, 139–150 (2002). [CrossRef]
  22. D. Rugar and P. Grutter, “Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett.67, 699–702 (1991). [CrossRef] [PubMed]
  23. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A74, 23813–23827 (2006). [CrossRef]
  24. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express19, 24522–24529 (2011). [CrossRef] [PubMed]
  25. S. Sridaran and S. A. Bhave, “Opto-acoustic oscillator using silicon MEMS optical modulator,” in Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2011), pp. 2920–2923. [CrossRef]
  26. X. L. Feng, C. J. White, A. Hajimiri, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol.3, 342–346 (2008). [CrossRef] [PubMed]
  27. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator,” Nat. Nanotechnol.4, 445–450 (2009). [CrossRef] [PubMed]
  28. M. Hossein-Zadeh and K. J. Vahala, “An optomechanical oscillator on a slicon chip,” IEEE J. Sel. Top. Quantum Electron.16, 276–287 (2010). [CrossRef]
  29. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett.94, 223902 (2005). [CrossRef] [PubMed]
  30. H. Rokhsari, M. Hossein-Zadeh, A. Hajimiri, and K. J. Vahala, “Brownian noise in radiation-pressure-driven micromechanical oscillators,” Appl. Phys. Lett.89, 261109 (2006). [CrossRef]
  31. W. A. Edson, “Noise in oscillators,” Proc. IRE48, 1454–1466 (1960). [CrossRef]
  32. W. P. Robins, Phase Noise in Signal Sources (Peter Peregrinus Ltd, 1982), pp. 48–53.
  33. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13, 1725–1735 (1995). [CrossRef]
  34. J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The Maser–new type of microwave amplifier, frequency standard, and spectrometer,” Phys. Rev.99, 1264–1274 (1955). [CrossRef]
  35. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev.112, 1940–1949 (1958). [CrossRef]
  36. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envelope offset noise of mode-locked lasers,” Appl. Phys. B82, 265–273 (2006). [CrossRef]
  37. C. Junge, S. Nickel, D. O’Shea, and A. Rauschenbeutel, “Bottle microresonator with actively stabilized evanescent coupling,” Opt. Lett.36, 3488–3490 (2011). [CrossRef] [PubMed]
  38. K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys.95, 2682–2689 (2004). [CrossRef]
  39. M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D7, 107–116 (1999).
  40. J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett.10, 2537–2542 (2010). [CrossRef] [PubMed]
  41. J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, F. Pérez-Murano, J. Fraxedas, J. Esteve, and N. Barniol, “Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions,” Appl. Phys. Lett.91, 013501 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited