OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12771–12786

A maximum likelihood approach to the inverse problem of scatterometry

Mark-Alexander Henn, Hermann Gross, Frank Scholze, Matthias Wurm, Clemens Elster, and Markus Bär  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12771-12786 (2012)
http://dx.doi.org/10.1364/OE.20.012771


View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scatterometry is frequently used as a non-imaging indirect optical method to reconstruct the critical dimensions (CD) of periodic nanostructures. A particular promising direction is EUV scatterometry with wavelengths in the range of 13 – 14 nm. The conventional approach to determine CDs is the minimization of a least squares function (LSQ). In this paper, we introduce an alternative method based on the maximum likelihood estimation (MLE) that determines the statistical error model parameters directly from measurement data. By using simulation data, we show that the MLE method is able to correct the systematic errors present in LSQ results and improves the accuracy of scatterometry. In a second step, the MLE approach is applied to measurement data from both extreme ultraviolet (EUV) and deep ultraviolet (DUV) scatterometry. Using MLE removes the systematic disagreement of EUV with other methods such as scanning electron microscopy and gives consistent results for DUV.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 8, 2012
Revised Manuscript: March 16, 2012
Manuscript Accepted: April 1, 2012
Published: May 23, 2012

Citation
Mark-Alexander Henn, Hermann Gross, Frank Scholze, Matthias Wurm, Clemens Elster, and Markus Bär, "A maximum likelihood approach to the inverse problem of scatterometry," Opt. Express 20, 12771-12786 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12771


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Huang and F. Terry, “Spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films455, 828–836 (2004). [CrossRef]
  2. C. Raymond, M. Murnane, S. Prins, S. Sohail, H. Naqvi, J. McNeil, and J. Hosch, “Multiparameter grating metrology using optical scatterometry,” J. Vac. Sci. Technol. B15, 361–368 (1997). [CrossRef]
  3. J. Perlich, F. Kamm, J. Rau, F. Scholze, and G. Ulm, “Characterization of extreme ultraviolet masks by extreme ultraviolet scatterometry,” J. Vac. Sci. Technol. B22, 3059 (2004). [CrossRef]
  4. F. Scholze and C. Laubis, “Use of EUV scatterometry for the characterization of line profiles and line roughness on photomasks,” Proc. SPIE6792, 6792OU (2008).
  5. M.-A. Henn, R. Model, M. Bär, M. Wurm, B. Bodermann, A. Rathsfeld, and H. Gross, “On numerical reconstructions of lithographic masks in DUV scatterometry,” Proc. SPIE7390, 73900Q (2009). [CrossRef]
  6. M. Wurm, S. Bonifer, B. Bodermann, and J. Richter, “Deep ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements,” Meas. Sci. Technol.22, 094024 (2011). [CrossRef]
  7. X. Niu, N. Jakatdar, J. Bao, C. Spanos, and S. Yedur, “Specular spectroscopic scatterometry in DUV lithography,” Proc. SPIE3677, 159–168 (1999). [CrossRef]
  8. H. Patrick, T. Germer, Y. Ding, H. Ro, L. Richter, and C. Soles, “In situ measurement of annealing-induced line shape evolution in nanoimprinted polymers using scatterometry,” Proc. SPIE7271, 727128 (2009). [CrossRef]
  9. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. A71, 811–818 (1981). [CrossRef]
  10. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12, 1068–1076 (1995). [CrossRef]
  11. A. Tavrov, M. Totzeck, N. Kerwien, and H. Tiziani, “Rigorous coupled-wave analysis calculus of submicrometer interference pattern and resolving edge position versus signal-to-noise ratio,” Opt. Eng.41, 1886 (2002).
  12. P. Lalanne and G. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A13, 779–784 (1996). [CrossRef]
  13. R. Petit and L. Botten, Electromagnetic theory of gratings (Springer, 1980). [CrossRef]
  14. L. Landau and J. Lifschitz, Lehrbuch der theoretischen Physik: 2, Klassische Feldtheorie (Akademie Verlag, 1977).
  15. J. Elschner, R. Hinder, and G. Schmidt, “Finite element solution of conical diffraction problems,” Adv. Comput. Math.16, 139–156 (2002). [CrossRef]
  16. H. Gross, R. Model, M. Bär, M. Wurm, B. Bodermann, and A. Rathsfeld, “Mathematical modelling of indirect measurements in scatterometry,” Measurement39, 782–794 (2006). [CrossRef]
  17. O. Cessenat and B. Despres, “Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem,” SIAM J. Numer. Anal.35, 255–299 (1998). [CrossRef]
  18. F. Ihlenburg, Finite element analysis of acoustic scattering (Springer, 1998). [CrossRef]
  19. J. Melenk and I. Babuška, “The partition of unity finite element method: basic theory and applications,” Comput. Meth. Appl. Mech. Eng.139, 289–314 (1996). [CrossRef]
  20. J. Turunen and F. Wyrowski, eds., Diffractive optics for industrial and commercial applications (Wiley-VCH, 1997).
  21. A. Tarantola, Inverse problem theory (Elsevier, 1987).
  22. S. Coulombe, B. Minhas, C. Raymond, S. Naqvi, and J. McNeil, “Scatterometry measurement of sub-0.1 μm linewidth gratings,” J. Vac. Sci. Technol. B16, 80 (1998). [CrossRef]
  23. H. Gross, A. Rathsfeld, F. Scholze, and M. Bär, “Profile reconstruction in extreme ultraviolet (EUV) scatterometry: modeling and uncertainty estimates,” Meas. Sci. Technol.20, 105102 (2009). [CrossRef]
  24. R. Al-Assaad and D. Byrne, “Error analysis in inverse scatterometry. I. Modeling,” J. Opt. Soc. Am. A24, 326–338 (2007). [CrossRef]
  25. M. Wurm, “Über die dimensionelle Charakterisierung von Gitterstrukturen auf Fotomasken mit einem neuartigen DUV-Scatterometer,” Ph.D. thesis, Friedrich-Schiller-Universität Jena (2008).
  26. H. Patrick, T. Germer, R. Silver, and B. Bunday, “Developing an uncertainty analysis for optical scatterometry,” Proc. SPIE7272, 72720T (2009).
  27. A. Kato and F. Scholze, “Effect of line roughness on the diffraction intensities in angular resolved scatterometry,” Appl. Opt.49, 6102–6110 (2010). [CrossRef]
  28. H. Gross, M.-A. Henn, A. Rathsfeld, and M. Bär, “Stochastic modelling aspects for an improved solution of the inverse problem in scatterometry,” in “Advanced mathematical and computational tools in metrology and testing: AMCTM IX,” F. Pavese, M. Bär, J.-R. Filtz, A. B. Forbes, L. Pendrill, and H. Shirono, eds. (World Scientific Pub. Co. Inc., 2012), 202–209.
  29. J. Ruanaidh and W. Fitzgerald, Numerical Bayesian Methods Applied to Signal Processing (Springer, 1996). [CrossRef]
  30. C. Laubis, C. Buchholz, A. Fischer, S. Plöger, F. Scholz, H. Wagner, F. Scholze, G. Ulm, H. Enkisch, S. Müllender, M. Wedowski, E. Louis, and E. Zoethout, “Characterization of large off-axis EUV mirrors with high accuracy reflectometry at PTB,” Proc. SPIE6151, 61510I (2006). [CrossRef]
  31. J. Pomplun, S. Burger, F. Schmidt, F. Scholze, C. Laubis, and U. Dersch, “Metrology of EUV Masks by EUV-Scatterometry and Finite Element Analysis,” Proc. SPIE7028, 70280P (2008). [CrossRef]
  32. P. Ciarlet, The finite element method for elliptic problems (North-Holland, 1978).
  33. J. Elschner, R. Hinder, A. Rathsfeld, and G. Schmidt, http://www.wias-berlin.de/software/DIPOG .
  34. R. Millar, Maximum Likelihood Estimation and Inference (Wiley, 2011). [CrossRef]
  35. H. Gross, A. Rathsfeld, and M. Bär, “Modelling and uncertainty estimates for numerically reconstructed profiles in scatterometry,” in “Advanced mathematical and computational tools in metrology and testing: AMCTM VIII,” F. Pavese, M. Bär, A. B. Forbes, J.-M. Linares, C. Perruchet, and N.-F. Zhang, eds. (World Scientific Pub. Co. Inc., 2009), 142–147.
  36. H. Gross, R. Model, F. Scholze, M. Wurm, B. Bodermann, M. Bär, and A. Rathsfeld, “Modellbildung, Bestimmung der Messunsicherheit und Validierung für diskrete inverse Probleme am Beispiel der Scatterometrie,” VDI-Berichte2011, 337–346 (2008).
  37. J. Richter, J. Rudolf, B. Bodermann, and J. C. Lam, “Comparative scatterometric CD measurements on a MoSi photo mask using different metrology tools,” Proc. SPIE7122, 71222U (2008). [CrossRef]
  38. M. Wurm, S. Bonifer, B. Bodermann, and M. Gerhard, “Comparison of far field characterisation of DOEs with a goniometric DUV-scatterometer and a CCD-based system,” J. Eur. Opt. Soc. Rapid Publ.6, 11015s (2011). [CrossRef]
  39. J. Kaipio and E. Somersalo, Statistical and computational inverse problems (Springer, 2005).
  40. J. Berger, Statistical decision theory and Bayesian analysis (Springer, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited