OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12787–12792

Passively cascade-pulsed erbium ZBLAN all-fiber laser

Tzong-Yow Tsai, Yen-Cheng Fang, Hong-Xi Tsao, Shih-Ting Lin, and Chieh Hu  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12787-12792 (2012)
http://dx.doi.org/10.1364/OE.20.012787


View Full Text Article

Enhanced HTML    Acrobat PDF (1154 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and numerically demonstrate a cascade pulsing mechanism in a CW-pumped Er3+:ZBLAN all-fiber laser system. In the design, the laser was pumped at 980 nm and passively Q-switched at 1.6 μm. The Q-switched resonance reduced the population on 4I13/2 of the erbium gain fiber, thereby creating a population inversion between the levels of 4I11/2 and 4I13/2, and instantly inducing an intense gain-switched pulse at 2.7 μm. Sequential 2.7-μm single-mode pulsing with a pulse energy of 170 μJ and a peak power of 6 kW was achieved with an absorbed pump power of 0.65 W.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3540) Lasers and laser optics : Lasers, Q-switched

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 27, 2012
Revised Manuscript: April 29, 2012
Manuscript Accepted: May 21, 2012
Published: May 23, 2012

Citation
Tzong-Yow Tsai, Yen-Cheng Fang, Hong-Xi Tsao, Shih-Ting Lin, and Chieh Hu, "Passively cascade-pulsed erbium ZBLAN all-fiber laser," Opt. Express 20, 12787-12792 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Wetenkamp, G. F. West, and H. Többen, “Optical properties of rare-earth-doped ZBLAN glasses,” J. Non-Cryst. Solids140, 35–40 (1992). [CrossRef]
  2. M. Pollnan and S. D. Jackson, “Erbium 3-μm fiber lasers,” IEEE J. Sel. Top. Quantum Electron.7(1), 30–40 (2001). [CrossRef]
  3. R. S. Quimby and W. J. Miniscalco, “Continuous-wave lasing on a self-terminating transition,” Appl. Opt.28(1), 14–16 (1989). [CrossRef] [PubMed]
  4. S. Bedö, M. Pollnau, W. Lüthy, and H. P. Weber, “Saturation of the 2.71 μm laser output in erbium doped ZBLAN fibers,” Opt. Commun.116(1-3), 81–86 (1995). [CrossRef]
  5. J. Y. Allain, M. Monerie, and H. Poignant, “Energy transfer in Er3+ /Pr3+ -doped fluoride glass fibers and application to lasing at 2.7 μm,” Electron. Lett.27(5), 445–447 (1991). [CrossRef]
  6. S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett.24(16), 1133–1135 (1999). [CrossRef] [PubMed]
  7. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett.36(7), 1104–1106 (2011). [CrossRef] [PubMed]
  8. S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron.47(4), 471–478 (2011). [CrossRef]
  9. C. Frerichs and T. Tauermann, “Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm,” Electron. Lett.30(9), 706–707 (1994). [CrossRef]
  10. D. J. Coleman, T. A. King, D.-K. Ko, and J. Lee, “Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser,” Opt. Commun.236(4-6), 379–385 (2004). [CrossRef]
  11. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett.36(15), 2812–2814 (2011). [CrossRef] [PubMed]
  12. C. Frerichs and U. B. Unrau, “Passive Q-Switching and mode-Locking of erbium-doped fluoride fiber lasers at 2.7 μm,” Opt. Fiber Technol.2(4), 358–366 (1996). [CrossRef]
  13. N. J. C. Libatique, J. D. Tafoya, and R. K. Jain, “A compact diode-pumped passively Q-switched mid-IR fiber laser,” in Advanced Solid State Lasers, Vol. 34 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 417–419.
  14. B. C. Dickinson, P. S. Golding, M. Pollnau, T. A. King, and S. D. Jackson, “Investigation of a 791-nm pulsed-pumped 2.7 μm Er-doped ZBLAN fibre laser,” Opt. Commun.191(3-6), 315–321 (2001). [CrossRef]
  15. M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett.36(10), 1923–1925 (2011). [CrossRef] [PubMed]
  16. T.-Y. Tsai, Y.-C. Fang, and S.-H. Hung, “Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers,” Opt. Express18(10), 10049–10054 (2010). [CrossRef] [PubMed]
  17. A. S. Kurkov, Ya. E. Sadovnikova, A. V. Marakulin, and E. M. Sholokhov, “All fiber Er-Tm Q-switched laser,” Laser Phys. Lett.7(11), 795–797 (2010). [CrossRef]
  18. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed. (CRC Press, 2001).
  19. F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er at 2.7 μm in a ZrF -based fluoride glass,” Electron. Lett.24(15), 909–910 (1988). [CrossRef]
  20. V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μm Er lasers,” IEEE J. Quantum Electron.29(2), 426–434 (1993). [CrossRef]
  21. N. J. C. Libatique, J. Tafoya, N. K. Viswanathan, R. K. Jain, and A. Cable, “‘Field-usable’ diode-pumped ~120 nm wavelength-tunable CW mid-IR fibre laser,” Electron. Lett.36(9), 791–792 (2000). [CrossRef]
  22. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett.32(5), 454–456 (2007). [CrossRef] [PubMed]
  23. M. Bernier, D. Faucher, N. Caron, and R. Vallée, “Highly stable and efficient erbium-doped 2.8 microm all fiber laser,” Opt. Express17(19), 16941–16946 (2009). [CrossRef] [PubMed]
  24. A. Siegman, Lasers (University Science Books 1986), pp. 1024–1028.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited