OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12799–12826

The symmetries of image formation by scattering. I. Theoretical framework

Dimitrios Giannakis, Peter Schwander, and Abbas Ourmazd  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 12799-12826 (2012)
http://dx.doi.org/10.1364/OE.20.012799


View Full Text Article

Enhanced HTML    Acrobat PDF (1190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perceive the world through images formed by scattering. The ability to interpret scattering data mathematically has opened to our scrutiny the constituents of matter, the building blocks of life, and the remotest corners of the universe. Here, we present an approach to image formation based on the symmetry properties of operations in three-dimensional space. Augmented with graph-theoretic means, this approach can recover the three-dimensional structure of objects from random snapshots of unknown orientation at four orders of magnitude higher complexity than previously demonstrated. This is critical for the burgeoning field of structure recovery by X-ray Free Electron Lasers, as well as the more established electron microscopic techniques, including cryo-electron microscopy of biological systems. In a subsequent paper, we demonstrate the recovery of structure and dynamics from experimental, ultralow-signal random sightings of systems with X-rays, electrons, and photons, with no orientational or timing information.

© 2012 OSA

OCIS Codes
(140.2600) Lasers and laser optics : Free-electron lasers (FELs)
(180.6900) Microscopy : Three-dimensional microscopy
(290.3200) Scattering : Inverse scattering
(290.5840) Scattering : Scattering, molecules
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: February 9, 2012
Revised Manuscript: May 11, 2012
Manuscript Accepted: May 16, 2012
Published: May 23, 2012

Citation
Dimitrios Giannakis, Peter Schwander, and Abbas Ourmazd, "The symmetries of image formation by scattering. I. Theoretical framework," Opt. Express 20, 12799-12826 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Freiwald and D. Y. Tsao“Functional compartmentalization and viewpoint generalization within the macaque face-processing system,” Science330, 845–851 (2010). [CrossRef] [PubMed]
  2. M. Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jönsson, D. Odić, B. Iwan, A. Rocker, D. Westphal, M. Hantke, D. P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T. A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, J. Claverie, C. Bostedt, J. D. Bozek, S. Boutet, A. A. Miahnahri, M. Messerschmidt, J. Krzywinski, G. Williams, K. O. Hodgson, M. J. Bogan, C. Y. Hampton, R. G. Sierra, D. Starodub, I. Andersson, S. Bajt, M. Barthelmess, J. C. H. Spence, P. Fromme, U. Weierstall, R. Kirian, M. Hunter, R. B. Doak, S. Marchesini, S. P. Hau-Riege, M. Frank, R. L. Shoeman, L. Lomb, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, C. Schmidt, L. Foucar, N. Kimmel, P. Holl, B. Rudek, B. Erk, A. Hömke, C. Reich, D. Pietschner, G. Weidenspointner, L. Strüder, G. Hauser, H. Gorke, J. Ullrich, I. Schlichting, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. Kühnel, R. Andritschke, C. Schröter, F. Krasniqi, M. Bott, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, H. N. Chapman, and J. Hajdu“Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature470, 78–81 (2011). [CrossRef] [PubMed]
  3. J. Frank“Single-particle imaging of macromolecules by cryo-electron microscopy,” Annu. Rev. Biophys. Biomolec. Struct.31, 303–319 (2002). [CrossRef]
  4. N. Fischer, A. L. Konevega, W. Wintermeyer, M. V. Rodnina, and H. Stark“Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy,” Nature466, 329–333 (2010). [CrossRef] [PubMed]
  5. J. B. Tenenbaum, V. de Silva, and J. C. Langford“A global geometric framework for nonlinear dimensionality reduction,” Science290, 2319–2323 (2000). [CrossRef] [PubMed]
  6. S. T. Roweis and S. K. Saul“Nonlinear dimensionality reduction by locally linear embedding,” Science290, 2323–2326 (2000). [CrossRef] [PubMed]
  7. M. Belkin and P. Niyogi“Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput.13, 1373–1396 (2003). [CrossRef]
  8. D. L. Donoho and C. Grimes“Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data,” Proc. Natl. Acad. Sci. U.S.A.100, 5591–5596 (2003). [CrossRef]
  9. R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker“Geometric diffusions as a tool for harmonic analysis and structure definition on data,” Proc. Natl. Acad. Sci. U.S.A.102, 7426–7431 (2005). [CrossRef] [PubMed]
  10. R. R. Coifman and S. Lafon“Diffusion maps,” Appl. Comput. Harmon. Anal.21, 5–30 (2006). [CrossRef]
  11. R. R. Coifman, Y. Shkolnisky, F. J. Sigworth, and A. Singer“Reference free structure determination through eigenvectors of center of mass operators,” Appl. Comput. Harmon. Anal.28, 296–312 (2010). [CrossRef] [PubMed]
  12. A. L. Ferguson, A. Z. Panagiotopoulos, P. G. Debenedetti, and I. G. Kevrekidis“Systematic determination of order parameters for chain dynamics using diffusion maps,” Proc. Natl. Acad. Sci. U.S.A.107, 13597–13602 (2010). [CrossRef] [PubMed]
  13. A. Singer, R. R. Coifman, F. J. Sigworth, D. W. Chester, and Y. Shkolnisky“Detecting consistent common lines in cryo-EM by voting,” J. Struct. Biol.169, 312–322 (2010). [CrossRef]
  14. http://www.youtube.com/watch?v=uat-1voeP3o .
  15. P. Schwander, D. Giannakis, C. H. Yoon, and A. Ourmazd“The symmetries of image formation by scattering. II. Applications,” Opt. Express (2012). (submitted).
  16. R. W. Gerchberg and W. O. Saxton“A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).
  17. J. R. Fienup“Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett.3, 27–29 (1978). [CrossRef] [PubMed]
  18. F. Oszlányi and A. Süto“Ab initio structure solution by charge flipping,” Acta Crystallogr.60, 134–141 (2004). [CrossRef]
  19. F. NattererThe Mathematics of Computerized Tomography (SIAM, 2001). [CrossRef]
  20. J. Girard, G. Maire, H. Giovannini, A. Talneau, K. Belkebir, P. C. Chaumet, and A. Sentenac“Nanometric resolution using far-field optical tomographic microscopy in the multiple scattering regime,” Phys. Rev. A82, 061801(R) (2010). [CrossRef]
  21. A. Sentenac, O. Haeberle, and K. Belkebir“Introduction,” J. Mod. Opt.57, 685 (2010). [CrossRef]
  22. R. Fung, V. Shneerson, D. K. Saldin, and A. Ourmazd“Structure from fleeting illumination of faint spinning objects in flight,” Nat. Phys.5, 64–67 (2008). [CrossRef]
  23. N. T. D. Loh and V. Elser“Reconstruction algorithm for single-particle diffraction imaging experiments,” Phys. Rev. E80, 026705–1–026705–20 (2009). [CrossRef]
  24. P. Schwander, R. Fung, G. N. Phillips, and A. Ourmazd“Mapping the conformations of biological assemblies,” New J. Phys.12, 1–15 (2010). [CrossRef]
  25. S. H. W. Scheres, H. Gao, M. Valle, G. T. Herman, P. P. B. Eggermont, J. Frank, and J.-M. Carazo“Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization,” Nat. Methods4, 27–29 (2007). [CrossRef]
  26. L. Younes, P. W. Michor, J. Shah, and D. Mumford“A metric on shape space with explicit geodesics,” Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. Lincei, Mat. Appl.9, 25–57 (2008). [CrossRef]
  27. T. Lin, H. Zha, and S. Lee“Riemannian manifold learning fo rnonlinear dimensionality reduction,” in ECCV Part I, LNCS,, A. Leondardis, H. Bischof, and A. Pinzeds. (Springer-Verlag, 2006), 44–55.
  28. B. Schölkopf, B. Smola, and K.-R. Müller“Nonlinear component analysis as an kernel eigenvalue problem,” Neural Comput.10, 1299–1319 (1998). [CrossRef]
  29. C. M. Bishop, M. Svensen, and C. K. I. Williams“GTM: The generative topographic mapping,” Neural Comput.463, 379–383 (1998).
  30. B. Moths and A. Ourmazd“Bayesian algorithms for recovering structure from single-particle diffraction snapshots of unknown orientation: a comparison,” Acta Crystallogr.A67 (2011).
  31. M. Balasubramanian and E. L. Schwartz“The Isomap algorithm and topological stability,” Science295, 5552 (2002). [CrossRef]
  32. R. Coifman, Y. Shkolnisky, F. Sigworth, and A. Singer“Graph Laplacian tomography from unknown random projections,” IEEE Trans. Image Process.17, 1891–1899 (2008). [CrossRef] [PubMed]
  33. B. F. SchutzGeometrical Methods of Mathematical Physics (Cambridge University Press, 1980).
  34. S. LangIntroduction to Differentiable Manifolds (Springer-Verlag, 2002).
  35. E. P. WignerGroup Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, 1959).
  36. L. C. Biedenharn and J. D. LouckAngular Momentum in Quantum Physics (Addison Wesley, 1981).
  37. G. S. Chirikjian and A. B. KyatkinEngineering Applications of Noncummutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups (CRC Press, 2000). [CrossRef] [PubMed]
  38. B. L. Hu“Scalar waves in the mixmaster universe. I. The Helmholtz equation in a fixed background,” Phys. Rev. D8, 1048–1060 (1973). [CrossRef]
  39. A. H. Taub“Empty space-times admitting a three parameter group of motions,” Ann. Math.53, 472–490 (1951). [CrossRef]
  40. J. M. CowleyDiffraction Physics, 3rd ed. (North Holland, 1995).
  41. A. ArvanitoyeorgosAn Introduction to Lie Groups and the Geometry of Homogeneous Spaces (American Mathematical Society, 2003).
  42. J. B. KuipersQuaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality (Princeton University Press, 2002). [PubMed]
  43. S. LangFundamentals of Differential Geometry (Springer-Verlag, 1998).
  44. A. M. Bronstein, M. M. Bronstein, and R. KimmelNumerical Geometry of Non-Rigid Shapes (Springer, 2007).
  45. T. Sauer, J. A. Yorke, and M. Casdagli“Embedology,” J. Stat. Phys.65, 579–616 (1991). [CrossRef]
  46. R. M. WaldGeneral Relativity (The University of Chicago Press, 1984).
  47. P. H. BérardSpectral Geometry: Direct and Inverse Problems, (Springer-Verlag, 1989).
  48. S. RosenbergThe Laplacian on a Riemannian Manifold (Cambridge University Press, 1997). [CrossRef]
  49. N. J. VilenkinSpecial Functions and the Theory of Group Representations, (American Mathematical Society, 1968).
  50. D. A. Varshalovich, A. N. Moskalev, and V. K. KhersonskiiQuantum Theory of Angular Momentum (World Scientific, 1988).
  51. J. L. McCauleyClassical Mechanics: Transformations, Flows, Integrable and Chaotic Dynamics (Cambridge University Press, 1997).
  52. C. Misner“Mixmaster universe,” Phy. Rev. Lett.22, 1071–1074 (1969). [CrossRef]
  53. S. Lafon“Diffusion maps and geometric harmonics,” Ph.D. thesis, Yale University (2004).
  54. W. D. RossPlato’s Theory of Ideas (Oxford University Press, 1951). [PubMed]
  55. K. Belkebir and M. Saillard“Testing inversion algorithms against experimental data: Inhomogeneous targets,” Inverse Probl.21, S1 (2004). [CrossRef]
  56. J. M. Geffrin and P. Sabouroux“Continuing with the Fresnel database: Experimental setup and improvements in 3D scattering measurements,” Inverse Probl.25, 024001 (2009). [CrossRef]
  57. Y. LeCun, J. S. Denker, S. Solla, R. E. Howard, and L. D. Jackel“Optimal brain damage,” in Advances in Neural Information Processing Systems (NIPS 1989), D. Touretzkyed. (Morgan Kaufman, 1990), Vol. 2, pp. 598–605.
  58. D. T. Cromer and J. B. Mann“Atomic scattering factors computed from numerical Hartree-Fock wavefunctions,” Acta Cryst. A24, 321–324 (1968). [CrossRef]
  59. L. Lovisolo and E. A. B. da Silva“Uniform distribution of points on a hyper-sphere with applications to vector bit-plane encoding,” IEE Proc. Vision Image Signal Process.148, 187–193 (2001). [CrossRef]
  60. P. Schwander“Efficient interpolation of scattering data to an arbitrary grid,” (in preparation, 2012).
  61. S. Marchesini“Ab initio compressive phase retrieval,” presented at the XXI IUCr Congress, Osaka, Japan, 23–31 Aug. 2008.
  62. P. Bérard, G. Besson, and S. Gallot“Embedding Riemannian manifolds by their heat kernel,” Geom. Funct. Anal.4, 373–398 (1994). [CrossRef]
  63. G. W. Stewart“Error and perturbation bounds for subspaces associated with certain eigenvalue problems,” SIAM Rev.15, 727–764 (1973). [CrossRef]
  64. H.-D. Cao and X.-P. Zhu“Hamilton-Perelman’s proof of the Poincaré conjecture and the geometrization conjecture,” (2006). arxiv:math/0612069v1 [math.DG].
  65. P. ToppingLecture Notes on Ricci Flow (Cambridge University Press, 2006). [CrossRef]
  66. J. F. M. Svensen“GTM: The generative topographic mapping,” Ph.D. thesis, Aston University (1998).
  67. V. L. Shneerson, A. Ourmazd, and D. K. Saldin“Crystallography without crystals. I. the common-line method for assembling a 3D diffraction volume from single-particle scattering,” Acta Cryst. A64, 303–315 (2008). [CrossRef]
  68. W. HeisenbergDer Teil und das Ganze (R. Piper & Co.Verlag, 1981).
  69. D. Saldin, V. L. Shneerson, R. Fung, and A. Ourmazd“Structure of isolated biomolecules obtained from ultrashort X-ray pulses: Exploiting the symmetry of random orientations,” J. Phys.: Condens. Matter21, 134014 (2009). [CrossRef]
  70. P. Kostelec and D. Rockmore“FFTs on the rotation group,” Santa Fe Institute working paper #03-11-060 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited