OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 12850–12859

Enhanced fluorescence in a nanoporous waveguide and its quantitative analysis

Yong Fan, Kazuhiro Hotta, Akira Yamaguchi, and Norio Teramae  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 12850-12859 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1533 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence behavior was examined for fluorophore-labeled protein (BSA-AF) adsorbed on the nanopore surface of a nanoporous waveguiding film. The waveguiding film has a bilayer structure of a porous anodic alumina (PAA) layer on a metallic aluminum (Al) layer, and this structure allows efficient interaction of fluorophores entrapped in the nanoporous waveguiding film with a hotspot of the enhanced electromagnetic field of the waveguide modes. Fluorescence response of BSA-AF depends on the enhanced field within the waveguiding film and the enlarged adsorbed amount in the PAA layer where most of the light is confined. Enhancement of the field in the waveguiding film can be controlled by the refractive index of the PAA layer and enlargement of the pore size efficiently affects the enhancement of the fluorescence response. Compared to the film without a PAA layer, the PAA/Al film exhibits more than 140-fold larger fluorescence response due to the large adsorption capacity of the PAA nanopores and the enhanced field formed by the waveguide modes in the PAA layer with a low refractive index.

© 2012 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: February 10, 2012
Revised Manuscript: March 18, 2012
Manuscript Accepted: March 19, 2012
Published: May 23, 2012

Yong Fan, Kazuhiro Hotta, Akira Yamaguchi, and Norio Teramae, "Enhanced fluorescence in a nanoporous waveguide and its quantitative analysis," Opt. Express 20, 12850-12859 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008). [CrossRef]
  2. J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, and K. Nowaczyk, “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,” Analyst (Lond.)133(10), 1308–1346 (2008). [CrossRef] [PubMed]
  3. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt.45(4), 661–699 (1998). [CrossRef]
  4. F. D. Stefani, K. Vasilev, N. Bocchio, F. Gaul, A. Pomozzi, and M. Kreiter, “Photonic mode density effects on single-molecule fluorescence blinking,” New J. Phys.9(2), 21 (2007). [CrossRef]
  5. J. Zhang and J. R. Lakowicz, “Metal-enhanced fluorescence of an organic fluorophore using gold particles,” Opt. Express15(5), 2598–2606 (2007). [CrossRef] [PubMed]
  6. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett.7(3), 690–696 (2007). [CrossRef] [PubMed]
  7. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano3(3), 744–752 (2009). [CrossRef] [PubMed]
  8. Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc.132(16), 5540–5541 (2010). [CrossRef] [PubMed]
  9. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express12(16), 3673–3685 (2004). [CrossRef] [PubMed]
  10. S. Fang, H. J. Lee, A. W. Wark, H. M. Kim, and R. M. Corn, “Determination of ribonuclease H surface enzyme kinetics by surface plasmon resonance imaging and surface plasmon fluorescence spectroscopy,” Anal. Chem.77(20), 6528–6534 (2005). [CrossRef] [PubMed]
  11. S.-H. Guo, J. J. Heetderks, H.-C. Kan, and R. J. Phaneuf, “Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves,” Opt. Express16(22), 18417–18425 (2008). [CrossRef] [PubMed]
  12. J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: Nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett.9(3), 1189–1195 (2009). [CrossRef] [PubMed]
  13. P.-F. Guo, S. Wu, Q.-J. Ren, J. Lu, Z. Chen, S.-J. Xiao, and Y.-Y. Zhu, “Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays,” J. Phys. Chem. Lett.1(1), 315–318 (2010). [CrossRef]
  14. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H. C. Wu, “Fluorescence enhancement by surface gratings,” Opt. Express14(22), 10825–10830 (2006). [CrossRef] [PubMed]
  15. Y. Jiang, H.-Y. Wang, H. Wang, B.-R. Gao, Y.- Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C115(25), 12636–12642 (2011). [CrossRef]
  16. N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, “Distance dependence of fluorescence enhancement from photonic crystal surface,” J. Appl. Phys.103(8), 083104 (2008). [CrossRef]
  17. A. Minardo, R. Bernini, F. Mottola, and L. Zeni, “Optimization of metal-clad waveguides for sensitive fluorescence detection,” Opt. Express14(8), 3512–3527 (2006). [CrossRef] [PubMed]
  18. N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express16(26), 21626–21640 (2008). [CrossRef] [PubMed]
  19. C. J. Huang, J. Dostalek, and W. Knoll, “Long range surface plasmon and hydrogel optical waveguide field-enhanced fluorescence biosensor with 3D hydrogel binding matrix: On the role of diffusion mass transfer,” Biosens. Bioelectron.26(4), 1425–1431 (2010). [CrossRef] [PubMed]
  20. W. N. Hansen, “Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium,” J. Opt. Soc. Am.58(3), 380–390 (1968). [CrossRef]
  21. S. Fukuzaki, H. Urano, and K. Nagata, “Adsorption of bovine serum albumin onto metal oxide surfaces,” J. Ferment. Bioeng.81(2), 163–167 (1996). [CrossRef]
  22. A. Yamaguchi, K. Hotta, and N. Teramae, “Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film,” Anal. Chem.81(1), 105–111 (2009). [CrossRef] [PubMed]
  23. K. Hotta, A. Yamaguchi, and N. Teramae, “Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film,” Anal. Chem.82(14), 6066–6073 (2010). [CrossRef] [PubMed]
  24. K. Hotta, A. Yamaguchi, and N. Teramae, “Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing,” ACS Nano6(2), 1541–1547 (2012).
  25. P. G. Squire, P. Moser, and C. T. O’Konski, “The hydrodynamic properties of bovine serum albumin monomer and dimer,” Biochemistry7(12), 4261–4272 (1968). [CrossRef] [PubMed]
  26. S. J. McClellan and E. I. Franses, “Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin,” Colloids Surf. B Biointerfaces28(1), 63–75 (2003). [CrossRef]
  27. N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005). [CrossRef]
  28. T. D. Lazzara, K. H. A. Lau, and W. Knoll, “Mounted nanoporous anodic alumina thin films as planar optical waveguides,” J. Nanosci. Nanotechnol.10(7), 4293–4299 (2010). [CrossRef] [PubMed]
  29. K. H. A. Lau, L. S. Tan, K. Tamada, M. S. Sander, and W. Knoll, “Highly sensitive detection of process occurring inside nanoporous anodic alumina templates: a waveguide optical study,” J. Phys. Chem. B108(30), 10812–10818 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited