OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13215–13225

Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators

Judson D. Ryckman, V. Diez-Blanco, Joyeeta Nag, Robert E. Marvel, B. K. Choi, Richard F. Haglund, Jr., and Sharon M. Weiss  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13215-13225 (2012)
http://dx.doi.org/10.1364/OE.20.013215


View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate photothermally induced optical switching of ultra-compact hybrid Si-VO2 ring resonators. The devices consist of a sub-micron length ~70nm thick patch of phase-changing VO2 integrated onto silicon ring resonators as small as 1.5μm in radius. The semiconductor-to-metal transition (SMT) of VO2 is triggered using a 532nm pump laser, while optical transmission is probed using a tunable cw laser near 1550nm. We observe optical modulation greater than 10dB from modest quality-factor (~103) resonances, as well as a large –1.26nm change in resonant wavelength Δλ, resulting from the large change in the dielectric function of VO2 in the insulator-to-metal transition achieved by optical pumping.

© 2012 OSA

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(230.3120) Optical devices : Integrated optics devices
(230.4110) Optical devices : Modulators
(230.5750) Optical devices : Resonators
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 27, 2012
Revised Manuscript: May 19, 2012
Manuscript Accepted: May 24, 2012
Published: May 29, 2012

Citation
Judson D. Ryckman, V. Diez-Blanco, Joyeeta Nag, Robert E. Marvel, B. K. Choi, Richard F. Haglund, and Sharon M. Weiss, "Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators," Opt. Express 20, 13215-13225 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13215


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  2. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  4. Q. F. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express15(3), 924–929 (2007). [CrossRef] [PubMed]
  5. Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express14(20), 9431–9435 (2006). [CrossRef] [PubMed]
  6. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004). [CrossRef] [PubMed]
  7. J. Teng, P. Dumon, W. Bogaerts, H. B. Zhang, X. G. Jian, X. Y. Han, M. S. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009). [CrossRef] [PubMed]
  8. W. N. Ye, J. Michel, and L. C. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett.20(11), 885–887 (2008). [CrossRef]
  9. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett.33(19), 2185–2187 (2008). [CrossRef] [PubMed]
  10. F. Y. Gardes, G. T. Reed, N. G. Emerson, and C. E. Png, “A sub-micron depletion-type photonic modulator in Silicon On Insulator,” Opt. Express13(22), 8845–8854 (2005). [CrossRef] [PubMed]
  11. Y. H. Kuo, Y. K. Lee, Y. S. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  12. L. Liu, J. Van Campenhout, G. Roelkens, R. A. Soref, D. Van Thourhout, P. Rojo-Romeo, P. Regreny, C. Seassal, J. M. Fédéli, and R. Baets, “Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated III-V microdisk cavity,” Opt. Lett.33(21), 2518–2520 (2008). [CrossRef] [PubMed]
  13. H. W. Chen, Y. H. Kuo, and J. E. Bowers, “25Gb/s hybrid silicon switch using a capacitively loaded traveling wave electrode,” Opt. Express18(2), 1070–1075 (2010). [CrossRef] [PubMed]
  14. M. Hochberg, T. Baehr-Jones, G. X. Wang, M. Shearn, K. Harvard, J. D. Luo, B. Q. Chen, Z. W. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, and A. Scherer, “Terahertz all-optical modulation in a silicon-polymer hybrid system,” Nat. Mater.5(9), 703–709 (2006). [CrossRef] [PubMed]
  15. M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  16. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition,” Opt. Express18(11), 11192–11201 (2010). [CrossRef] [PubMed]
  17. V. Eyert, “The metal-insulator transitions of VO2: a band theoretical approach,” Ann. Phys. (Leipzig)9, 650–704 (2002).
  18. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett.3(1), 34–36 (1959). [CrossRef]
  19. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol.4(11), 732–737 (2009). [CrossRef] [PubMed]
  20. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter12(41), 8837–8845 (2000). [CrossRef]
  21. D. Ruzmetov, G. Gopalakrishnan, J. D. Deng, V. Narayanamurti, and S. Ramanathan, “Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions,” J. Appl. Phys.106(8), 083702 (2009). [CrossRef]
  22. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett.87(23), 237401 (2001). [CrossRef] [PubMed]
  23. R. Lopez, R. F. Haglund, L. C. Feldman, L. A. Boatner, and T. E. Haynes, “Optical nonlinearities in VO2 nanoparticles and thin films,” Appl. Phys. Lett.85(22), 5191–5193 (2004). [CrossRef]
  24. A. Pashkin, C. Kubler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast insulator-metal phase transition in VO(2) studied by multiterahertz spectroscopy,” Phys. Rev. B83(19), 195120 (2011). [CrossRef]
  25. Q. F. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  26. J. Nag, E. A. Payzant, K. L. More, and R. F. Haglund, “Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide,” Appl. Phys. Lett.98(25), 251916 (2011). [CrossRef]
  27. J. Y. Suh, R. Lopez, L. C. Feldman, and J. R. F. Haglund, “Semiconductor to metal phase transition in the nucleation and growth of VO[sub 2] nanoparticles and thin films,” J. Appl. Phys.96(2), 1209–1213 (2004). [CrossRef]
  28. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006). [CrossRef]
  29. T. Ben-Messaoud, G. Landry, J. P. Gariepy, B. Ramamoorthy, P. V. Ashrit, and A. Hache, “High contrast optical switching in vanadium dioxide thin films,” Opt. Commun.281(24), 6024–6027 (2008). [CrossRef]
  30. G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, “Thermo-optic effect exploitation in silicon microstructures,” Sens. Actuators A Phys.71(1-2), 19–26 (1998). [CrossRef]
  31. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  32. J. D. Ryckman and S. M. Weiss, “Localized field enhancements in guided and defect modes of a periodic slot waveguide,” IEEE Photon. J3(6), 986–995 (2011). [CrossRef]
  33. M. Rini, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, “Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance,” Opt. Lett.30(5), 558–560 (2005). [CrossRef] [PubMed]
  34. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express18(17), 18235–18242 (2010). [CrossRef] [PubMed]
  35. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, L. Hanqing, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor-to-DRAM networks with monolithic silicon photonics,” in 16th IEEE Symposium on High Performance Interconnects,2008. HOTI ‘08., 2008), pp. 21–30.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (1114 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited