OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13226–13237

Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells

E. Wang, T. P. White, and K. R. Catchpole  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13226-13237 (2012)
http://dx.doi.org/10.1364/OE.20.013226


View Full Text Article

Enhanced HTML    Acrobat PDF (826 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically investigate the light trapping properties of two-dimensional diffraction gratings formed from silver disks or titanium dioxide pillars, placed on the rear of Si thin-film solar cells. In contrast to previous studies of front-surface gratings, we find that metal particles out-perform dielelectric ones when placed on the rear of the cell. By optimizing the grating geometry and the position of a planar reflector, we predict short circuit current enhancements of 45% and 67% respectively for the TiO2 and silver nanoparticles. Furthermore, we show that interference effects between the grating and reflector can significantly enhance, or suppress, the light trapping performance. This demonstrates the critical importance of optimizing the reflector as an integral part of the light trapping structure.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Solar Energy

History
Original Manuscript: March 9, 2012
Revised Manuscript: May 22, 2012
Manuscript Accepted: May 23, 2012
Published: May 29, 2012

Citation
E. Wang, T. P. White, and K. R. Catchpole, "Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells," Opt. Express 20, 13226-13237 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13226


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007). [CrossRef]
  2. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008). [CrossRef]
  3. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  4. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000). [CrossRef] [PubMed]
  5. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006). [CrossRef]
  6. M. J. McCann, K. R. Catchpole, K. J. Weber, and A. W. Blakers, “A review of thin-film crystalline silicon for solar cell applications. Part 1: native substrates,” Sol. Energy Mater. Sol. Cells68, 135–171 (2001). [CrossRef]
  7. C. Rockstuhl, S. Fahr, F. Lederer, F.-J. Haug, T. Soderstrom, S. Nicolay, M. Despeisse, and C. Ballif, “Light absorption in textured thin film silicon solar cells: a simple scalar scattering approach versus rigorous simulation,” Appl. Phys. Lett.98(5), 051102 (2011). [CrossRef]
  8. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett.96(26), 261109 (2010). [CrossRef]
  11. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Muller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. Res. Appl.14(1), 13–24 (2006). [CrossRef]
  12. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91(6), 061116 (2007). [CrossRef]
  13. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011). [CrossRef]
  14. N. S. Zin, A. Blakers, and K. Weber, “RIE-induced carrier lifetime degradation,” Prog. Photovolt. Res. Appl.18(3), 214–220 (2010). [CrossRef]
  15. C.-M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F.-J. Haug, S. Fan, C. Ballif, and Y. Cui, “High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector,” Adv. Energy Mater.10, 10.1002 (2012).
  16. H. Sakai, T. Yoshida, T. Hama, and Y. Ichikawa, “Effects of surface morphology of transparent electrode on the open-circuit voltage in a-Si:H solar cells,” Jpn. J. Appl. Phys.29(Part 1, No. 4), 630–635 (1990). [CrossRef]
  17. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010). [CrossRef]
  18. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys.101(10), 104309 (2007). [CrossRef]
  19. Y. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, “Nanoparticle-enhanced thin film solar cells: metallic or dielectric nanoparticles?” Appl. Phys. Lett.96(7), 073111 (2010). [CrossRef]
  20. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009). [CrossRef]
  21. E. Wang, S. Mokkapati, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Effect of nanoparticle size distribution on the performance of plasmonic thin-film solar cells: mono-disperse versus multi-disperse arrays,” submitted.
  22. E. Wang, S. Mokkapati, T. P. White, T. Soderstrom, S. Varlamov, and K. R. Catchpole, “Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting,” submitted.
  23. Lumerical FDTD Solutions, www.lumerical.com .
  24. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995). [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  26. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1998).
  27. K. J. Innovation, http://software.kjinnovation.com .
  28. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95(5), 053115 (2009). [CrossRef]
  29. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express19(S2Suppl 2), A146–A156 (2011). [CrossRef] [PubMed]
  30. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011). [CrossRef] [PubMed]
  31. S. Mokkapati, F. J. Beck, R. De Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011). [CrossRef]
  32. K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105 (2007). [CrossRef]
  33. M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited