OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13262–13273

Performance of a three dimensional transformation-optical-flattened Lüneburg lens

Tom Driscoll, Guy Lipworth, Jack Hunt, Nathan Landy, Nathan Kundtz, Dimitri N. Basov, and David R. Smith  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13262-13273 (2012)
http://dx.doi.org/10.1364/OE.20.013262


View Full Text Article

Enhanced HTML    Acrobat PDF (2286 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate both the beam-forming and imaging capabilities of an X-band (8–12 GHz) operational Lüneburg lens, one side of which has been flattened via a coordinate transformation optimized using quasi-conformal transformation optics (QCTO) procedures. Our experimental investigation includes benchmark performance comparisons between the QCTO Lüneburg lens and a commensurate conventional Lüneburg lens. The QCTO Lüneburg lens is made from a metamaterial comprised of inexpensive plastic and fiberglass, and manufactured using fast and versatile numerically controlled water-jet machining. Looking forward towards the future and advanced TO designs, we discuss inevitable design trade-offs between affordable scalable manufacturing and rigorous adherence to the full TO solution, as well as possible paths to mitigate performance degradation in realizable designs.

© 2012 OSA

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(220.0220) Optical design and fabrication : Optical design and fabrication
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: March 23, 2012
Revised Manuscript: May 15, 2012
Manuscript Accepted: May 16, 2012
Published: May 29, 2012

Citation
Tom Driscoll, Guy Lipworth, Jack Hunt, Nathan Landy, Nathan Kundtz, Dimitri N. Basov, and David R. Smith, "Performance of a three dimensional transformation-optical-flattened Lüneburg lens," Opt. Express 20, 13262-13273 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  2. N. Kundtz and D. R. Smith, “Experimental and theoretical advances in the design of complex artificial electromagnetic media,” Ph.D. thesis (Duke University, 2009).
  3. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater.9, 129–132 (2010). [CrossRef]
  4. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323, 366–369 (2009). [CrossRef] [PubMed]
  5. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express17, 16535–16542 (2009). [CrossRef] [PubMed]
  6. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14, 9794–9804 (2006). [CrossRef] [PubMed]
  7. D. Schurig, J. B. Pendry, and D. R. Smith, “Transformation-designed optical elements,” Opt. Express15, 14772–14782 (2007). [CrossRef] [PubMed]
  8. D. R. Smith, W. J. Padilla, D. C. Vier, S. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  9. T. Driscoll, D. N. Basov, A. F. Starr, P. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, “Free-space microwave focusing by a negative-index gradient lens,” Appl. Phys. Lett.88, 081101 (2006). [CrossRef]
  10. W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today9, 28–35 (2006). [CrossRef]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  12. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Broadband transformation optics devices,” Materials3, 4793–4810 (2010). [CrossRef]
  13. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett.10, 1991–1997 (2010). [CrossRef] [PubMed]
  14. J. C. Maxwell, “Solutions of problems,” Cambridge Dublin Math. J.8, 188–195 (1854).
  15. R. Luneburg, Mathematical Theory of Optics (Brown University, 1944).
  16. W. S. Jagger, “The optics of the spherical fish lens,” Vision Res.32, 1271–1284 (1992). [CrossRef] [PubMed]
  17. D. Schurig, “An aberration-free lens with zero F-number,” New J. Phys.10, 115034 (2008). [CrossRef]
  18. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun.1, 124 (2010). [CrossRef] [PubMed]
  19. N. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasi-conformal coordinate transformations,” Phys. Rev. Lett.105, 193902 (2010). [CrossRef]
  20. J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions. II,” Philos. Trans. R. Soc. London205, 237–288 (1906). [CrossRef]
  21. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65, 195104 (2002). [CrossRef]
  22. Rozendal Associates, http://www.rozendalassociates.com/
  23. J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. F. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors11, 7982–7991 (2011). [CrossRef] [PubMed]
  24. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1977).
  25. A. Mojammad-Djafari, N. Qaddoumi, and R. Zoughi, “A blind deconvolution approach for resolution enhancement of near-field microwave images,” Proc. SPIE3816, 274–281 (1999). [CrossRef]
  26. S. P. Morgan, “General solution of the Luneberg lens problem,” J. Appl. Phys.29, 1358–1368 (1958). [CrossRef]
  27. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, S. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science325, 1518–1521 (2009). [CrossRef] [PubMed]
  28. M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, H. T. Kim, M. Di Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett.99, 044103 (2011). [CrossRef]
  29. N. Kundtz, D. Gaultney, and D. R. Smith, “Scattering cross-section of a transformation optics-based metamaterial cloak,” New J. Phys.12, 043039 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited