OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13390–13401

High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection

A. Quirce and A. Valle  »View Author Affiliations


Optics Express, Vol. 20, Issue 12, pp. 13390-13401 (2012)
http://dx.doi.org/10.1364/OE.20.013390


View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we report a new method of photonic generation of microwave signals using a multi-transverse mode VCSEL subject to two-frequency optical injection. Numerical simulations show that double injection locking involving two transverse modes can be obtained in these systems. We show that the higher-order transverse mode is excited with a much larger amplitude than that of the fundamental transverse mode. The comparison with the case of a single-transverse mode VCSEL subject to similar two-frequency optical injection shows that multi-transverse mode operation of the VCSEL enhances the performance of the photonic microwave generation system. Broad tuning ranges, beyond the THz region, and narrow linewidths are demonstrated in our system. The maximum frequency of the generated microwave signals can be substantially increased if multimode VCSELs are used instead of single-mode VCSELs.

© 2012 OSA

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 23, 2012
Revised Manuscript: April 13, 2012
Manuscript Accepted: April 18, 2012
Published: May 30, 2012

Citation
A. Quirce and A. Valle, "High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection," Opt. Express 20, 13390-13401 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-13390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ohtsubo, Semiconductor Lasers. Stability, Instability and Chaos, Springer Series in Optical Sciences (Springer, 2007).
  2. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol.24(12), 4502–4513 (2006). [CrossRef]
  3. C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron.9(5), 1386–1393 (2003). [CrossRef]
  4. D. Parekh, X. Zhao, W. Hofmann, M. C. Amann, L. A. Zenteno, and C. J. Chang-Hasnain, “Greatly enhanced modulation response of injection-locked multimode VCSELs,” Opt. Express16(26), 21582–21586 (2008). [CrossRef] [PubMed]
  5. H. Li, T. Lucas, J. G. McInerney, M. Wright, and R. A. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection,” IEEE J. Quantum Electron.32(2), 227–235 (1996). [CrossRef]
  6. J. Altes, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.42(2), 198–207 (2006). [CrossRef]
  7. A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, “Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection,” IEEE J. Quantum Electron.43(4), 322–333 (2007). [CrossRef]
  8. A. Quirce, A. Valle, A. Hurtado, C. Gimenez, L. Pesquera, and M. J. Adams, “Experimental study of transverse mode selection in VCSELs induced by parallel polarized optical injection,” IEEE J. Quantum Electron.46(4), 467–473 (2010). [CrossRef]
  9. A. Quirce, J. R. Cuesta, A. Valle, A. Hurtado, L. Pesquera, and M. J. Adams, “Polarization bistability induced by orthogonal optical injection in 1550-nm multimode VCSELs,” IEEE J. Sel. Top. Quantum Electron.18(2), 772–778 (2012). [CrossRef]
  10. H. Lin, Y. Zhang, D. W. Pierce, A. Quirce, and A. Valle, “Polarization dynamics of a multimode vertical-cavity surface-emitting laser subject to orthogonal optical injection,” J. Opt. Soc. Am. B29(4), 867–873 (2012). [CrossRef]
  11. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Vonlehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization, and transverse-mode characteristics of vertical cavity surface emitting lasers,” IEEE J. Quantum Electron.27(6), 1402–1409 (1991). [CrossRef]
  12. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical-cavity surface-emitting laser diodes,” IEEE J. Quantum Electron.31(8), 1423–1431 (1995). [CrossRef]
  13. A. Hayat, A. Bacou, A. Rissons, J. C. Mollier, V. Iakovlev, A. Sirbu, and E. Kapon, “Long wavelength VCSEL-by-VCSEL optical injection locking,” IEEE Trans. Microw. Theory Tech.57(7), 1850–1858 (2009). [CrossRef]
  14. H. Lin, D. W. Pierce, A. J. Basnet, A. Quirce, Y. Zhang, and A. Valle, “Two-frequency injection on a multimode vertical-cavity surface-emitting laser,” Opt. Express19(23), 22437–22442 (2011). [CrossRef] [PubMed]
  15. S. C. Chan, R. Diaz, and J. M. Liu, “Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron.40(2-4), 83–95 (2008). [CrossRef]
  16. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Proc. SPIE6468,46811–46811 (2007).
  17. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron.46(3), 421–428 (2010). [CrossRef]
  18. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett.31(15), 2254–2256 (2006). [CrossRef] [PubMed]
  19. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron.17(5), 1198–1211 (2011). [CrossRef]
  20. X. Q. Qi and J. M. Liu, “Dynamics scenarios of dual-beam optically injected semiconductor lasers,” IEEE J. Quantum Electron.47(6), 762–769 (2011). [CrossRef]
  21. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J.3(4), 644–650 (2011). [CrossRef]
  22. Y. C. Chen, Y. S. Juan, and F. Y. Lin, “High-frequency microwave signal generation in a semiconductor laser under double injection locking,” Proc. SPIE7936,793609 (2011).
  23. A. Valle, K. A. Shore, and L. Pesquera, “Polarization selection in birefringent vertical-cavity surface emitting lasers,” J. Lightwave Technol.14(9), 2062–2068 (1996). [CrossRef]
  24. A. Valle, J. Martin-Regalado, L. Pesquera, S. Balle, and M. San Miguel, “Polarization dynamics of birefringent index-guided vertical cavity surface-emitting lasers,” Proc. SPIE3283,280–291 (1998).
  25. J. Y. Law, G. H. M. vanTartwijk, and G. P. Agrawal, “Effects of transverse-mode competition on the injection dynamics of vertical-cavity surface-emitting lasers,” Quantum Semiclassic. Opt. J. Eu. Opt. Soc. Part B9(5), 737–747 (1997). [CrossRef]
  26. A. Valle and L. Pesquera, “Theoretical calculation of relative intensity noise of multimode vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.40(6), 597–606 (2004). [CrossRef]
  27. S. Wieczorek and W. W. Chow, “Bifurcations and chaos in a semiconductor laser with coherent or noisy optical injection,” Opt. Commun.282(12), 2367–2379 (2009). [CrossRef]
  28. J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.33(5), 765–783 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited