OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 12 — Jun. 4, 2012
  • pp: 13478–13487

Effects of reduced exciton diffusion in InGaN/GaN multiple quantum well nanorods

Bin Jiang, Chunfeng Zhang, Xiaoyong Wang, Fei Xue, Min Joo Park, Joon Seop Kwak, and Min Xiao  »View Author Affiliations

Optics Express, Vol. 20, Issue 12, pp. 13478-13487 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the effects of reduced exciton diffusion on the emission properties in InGaN/GaN multiple-quantum-well nanorods. Time-resolved photoluminescence spectra are recorded and compared in dry-etched InGaN/GaN nanorods and parent multiple quantum wells at various temperatures with carrier density in different regimes. Faster carrier recombination and absence of delayed rise in the emission dynamics are found in nanorods. Many effects, including surface damages and partial relaxation of the strain, may cause the faster recombination in nanorods. Together with these enhanced carrier recombination processes, the reduced exciton diffusion may induce the different temperature-dependent emission dynamics characterized by the delayed rise in time-resolved photoluminescence spectra.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Optical Devices

Original Manuscript: March 7, 2012
Revised Manuscript: April 21, 2012
Manuscript Accepted: May 23, 2012
Published: May 31, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Bin Jiang, Chunfeng Zhang, Xiaoyong Wang, Fei Xue, Min Joo Park, Joon Seop Kwak, and Min Xiao, "Effects of reduced exciton diffusion in InGaN/GaN multiple quantum well nanorods," Opt. Express 20, 13478-13487 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Kang, J. H. Ryu, H. K. Kim, H. Y. Kim, N. Han, Y. J. Park, P. Uthirakumar, and C.-H. Hong, “Comparison of various surface textured layer in InGaN LEDs for high light extraction efficiency,” Opt. Express19(4), 3637–3647 (2011). [CrossRef] [PubMed]
  2. Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, and H. C. Kuo, “Size-dependent strain relaxation and optical characteristics of InGaN/GaN Nanorod LEDs,” IEEE J. Sel. Top. Quantum Electron.15(4), 1226–1233 (2009). [CrossRef]
  3. Y. J. Lee, S.-Y. Lin, C.-H. Chiu, T.-C. Lu, H.-C. Kuo, S.-C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett.94(14), 141111 (2009). [CrossRef]
  4. Q. Li, K. R. Westlake, M. H. Crawford, S. R. Lee, D. D. Koleske, J. J. Figiel, K. C. Cross, S. Fathololoumi, Z. T. Mi, and G. T. Wang, “Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays,” Opt. Express19(25), 25528–25534 (2011). [CrossRef] [PubMed]
  5. H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, and S. Gwo, “InGaN/GaN nanorod array white light-emitting diode,” Appl. Phys. Lett.97(7), 073101 (2010). [CrossRef]
  6. H.-M. Kim, Y.-H. Cho, H. Lee, S. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorods arrays,” Nano Lett.4(6), 1059–1062 (2004). [CrossRef]
  7. W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) Silicon by molecular beam epitaxy,” Nano Lett.10(9), 3355–3359 (2010). [CrossRef] [PubMed]
  8. H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology17(5), 1454–1458 (2006). [CrossRef]
  9. H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, C.-T. Liang, T. Y. Lin, S. C. Tseng, and L. C. Chen, “Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Opt. Express15(15), 9357–9365 (2007). [CrossRef] [PubMed]
  10. K.-K. Kim, S.-D. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, S.-J. Park, and S.-W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett.94(7), 071118 (2009). [CrossRef]
  11. S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, Y.-S. Lin, C. Hsu, K.-J. Ma, and J.-I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys.92(8), 4441–4448 (2002). [CrossRef]
  12. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett.70(8), 981–983 (1997). [CrossRef]
  13. D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humpherys, “Carrier localization mechanisms in InXGa1-XN multiple quantum wells,” Phys. Rev. B83(11), 115321 (2011). [CrossRef]
  14. Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B55(4), R1938–R1941 (1997). [CrossRef]
  15. H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, and F. Scholz, “Probing individual localization centers in an InGaN/GaN quantum well,” Phys. Rev. Lett.92(10), 106802 (2004). [CrossRef] [PubMed]
  16. C.-N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, “Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells,” Phys. Rev. B82(8), 085305 (2010). [CrossRef]
  17. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys.36(Part 2, No. 4A), L382–L385 (1997). [CrossRef]
  18. T. Kuroda, A. Tackeuchi, and T. Sota, “Luminescence energy shift and carrier lifetime change dependence on carrier density in In0.12Ga0.88N/In0.03Ga0.97N quantum wells,” Appl. Phys. Lett.76(25), 3753–3755 (2000). [CrossRef]
  19. T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett.76(23), 3421–3423 (2000). [CrossRef]
  20. S. Sonderegger, E. Feltin, M. Merano, A. Crottini, J. F. Carlin, R. Sachot, B. Deveaud, N. Grandjean, and J. D. Ganiere, “High spatial resolution picosecond cathodoluminescence of InGaN quantum wells,” Appl. Phys. Lett.89(23), 232109 (2006). [CrossRef]
  21. V. Liuolia, S. Marcinkevičius, Y.-D. Lin, H. Ohta, S. P. DenBaars, and S. Nakamura, “Dynamics of polarized photoluminescence in m-plan InGaN/GaN quantum wells,” J. Appl. Phys.108(2), 023101 (2010). [CrossRef]
  22. S. Chichibu, K. Wada, and S. Nakamura, “Spatially resolved cathodeluminescence spectra of InGaN quantum wells,” Appl. Phys. Lett.71(16), 2346–2348 (1997). [CrossRef]
  23. J. Danhof, U. T. Schwarz, A. Kaneta, and Y. Kawakami, “Time-of-flight measurements of charge carrier diffusion in InxGa1-xN/GaN quantum wells,” Phys. Rev. B84(3), 035324 (2011). [CrossRef]
  24. S.-W. Feng, Y.-C. Cheng, Y.-Y. Chung, C. C. Yang, M.-H. Mao, Y.-S. Lin, K.-J. Ma, and J.-I. Chyi, “Multiple-component photoluminescence decay caused by carrier transport in InGaN/GaN multiple quantum wells with indium aggregation structures,” Appl. Phys. Lett.80(23), 4375–4377 (2002). [CrossRef]
  25. C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, and T. H. Hsueh, “Fabrication of InGaN/GaN nanorod light-emitting diodes with self-assembled Ni metal islands,” Nanotechnology18(44), 445201 (2007). [CrossRef]
  26. E. Kuokstis, J. W. Yang, G. Simin, M. Asif Khan, R. Gaska, and M. S. Shur, “Two mechanisms of blueshift of edge emission in InGaN-based epilayers and multiple quantum wells,” Appl. Phys. Lett.80(6), 977–979 (2002). [CrossRef]
  27. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett.69(27), 4188–4190 (1996). [CrossRef]
  28. G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, “Investigation of fast and slow decays in InGaN/GaN quantum wells,” Appl. Phys. Lett.99(8), 081104 (2011). [CrossRef]
  29. T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells,” J. Appl. Phys.92(6), 3071–3074 (2002). [CrossRef]
  30. A. Morel, P. Lefebvre, S. Kalliakos, T. Taliercio, T. Bretagnon, and B. Gil, “Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems,” Phys. Rev. B68(4), 045331 (2003). [CrossRef]
  31. I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharov, W. V. Lundin, A. F. Tsatsul’nikov, A. S. Usikov, Zh. I. Alferov, Yu. G. Musikhin, and D. Gerthsen, “Quantum dot origin of luminescence in InGaN-GaN structures,” Phys. Rev. B66(15), 155310 (2002). [CrossRef]
  32. M. Pophristic, F. H. Long, C. Tran, R. F. Karlicek, Z. C. Feng, and I. T. Ferguson, “Time-resolved spectroscopy of InxGa1-xN/GaN multiple quantum wells at room temperature,” Appl. Phys. Lett.73(6), 815–817 (1998). [CrossRef]
  33. P. Lefebvre, S. Kalliakos, T. Bretagnon, P. Valvin, T. Taliercio, B. Gil, N. Grandjean, and J. Massies, “Observation and modeling of the time-dependent descreening of internal electrical field in a wurtzite GaN/Al0.15Ga0.85N quantum well after high photoexcitation,” Phys. Rev. B69(3), 035307 (2004). [CrossRef]
  34. J. Lähnemann, O. Brandt, C. Pfüller, T. Flissikowski, U. Jahn, E. Luna, M. Hanke, M. Knelangen, A. Trampert, and H. T. Grahn, “Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure,” Phys. Rev. B84(15), 155303 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited