OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13789–13797

Reconfigurable surface plasmon polariton wave adapter designed by transformation optics

Bayaner Arigong, Jin Shao, Han Ren, Geng Zheng, Jeffrey Lutkenhaus, HyoungSoo Kim, Yuankun Lin, and Hualiang Zhang  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 13789-13797 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a reconfigurable surface plasmon polariton (SPP) wave adapter designed by transformation optics, which can control the propagation of SPP waves on un-even surfaces. The proposed plasmonic device is constructed using homogeneously tunable materials (e.g. liquid crystals) so that the corresponding SPP wave transmission can be reconfigured by applying different voltages. Additionally, modified designs optimized for practical fabrication parameters are investigated. Their performance is verified by full-wave simulations. The proposed devices will pave the way towards developing tunable plasmonic devices.

© 2012 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(230.3720) Optical devices : Liquid-crystal devices
(240.6680) Optics at surfaces : Surface plasmons
(350.5500) Other areas of optics : Propagation

ToC Category:
Optics at Surfaces

Original Manuscript: April 12, 2012
Revised Manuscript: May 6, 2012
Manuscript Accepted: May 7, 2012
Published: June 5, 2012

Bayaner Arigong, Jin Shao, Han Ren, Geng Zheng, Jeffrey Lutkenhaus, HyoungSoo Kim, Yuankun Lin, and Hualiang Zhang, "Reconfigurable surface plasmon polariton wave adapter designed by transformation optics," Opt. Express 20, 13789-13797 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. V. Nerkararyan, “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A237(1-2), 103–105 (1997). [CrossRef]
  2. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007). [CrossRef]
  3. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008). [CrossRef]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  6. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  7. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  8. E. C. Kinzel and X. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express17(10), 8036–8045 (2009). [CrossRef] [PubMed]
  9. G. Veronis, S. E. Kocabas, D. A. B. Miller, and S. Fan, “Modeling of plasmonic waveguide components and networks,” J. Comput. Theor. Nanosci.6(8), 1808–1826 (2009). [CrossRef]
  10. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express18(6), 6191–6204 (2010). [CrossRef] [PubMed]
  11. S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett.96(12), 121101 (2010). [CrossRef]
  12. R. Yang, R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide,” Opt. Lett.35(5), 649–651 (2010). [CrossRef] [PubMed]
  13. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. (Deerfield Beach Fla.)22(45), 5120–5124 (2010). [CrossRef] [PubMed]
  14. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express17(21), 19033–19040 (2009). [CrossRef] [PubMed]
  15. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  16. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmstrom, L. Wosinski, L. Thylen, and D. Dai, “Sub-um2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express19, 838–847 (2011).
  17. Y. Song, J. Wang, M. Yan, and M. Qiu, “Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter,” J. Opt.13(7), 075002 (2011). [CrossRef]
  18. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011), doi:. [CrossRef]
  19. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  20. X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19(14), 12865–12872 (2011). [CrossRef] [PubMed]
  21. B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from Surface Plasmon Polaritons by a Circular Array of Point Scatterers,” Phys. Rev. Lett.103(24), 246803 (2009). [CrossRef] [PubMed]
  22. G. Della Valle and S. Longhi, “Graded index surface-plasmon-polariton devices for subwavelength light management,” Phys. Rev. B82(15), 153411 (2010). [CrossRef]
  23. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011). [CrossRef] [PubMed]
  24. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012). [CrossRef] [PubMed]
  25. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett.10(6), 1991–1997 (2010). [CrossRef] [PubMed]
  26. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett.10(6), 1985–1990 (2010). [CrossRef] [PubMed]
  27. M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: cloak, concentrator and rotator for SPPs,” Opt. Express18(11), 12027–12032 (2010). [CrossRef] [PubMed]
  28. J. Renger, M. Kadic, G. Dupont, S. S. Aćimović, S. Guenneau, R. Quidant, and S. Enoch, “Hidden progress: broadband plasmonic invisibility,” Opt. Express18(15), 15757–15768 (2010). [CrossRef] [PubMed]
  29. J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011). [CrossRef] [PubMed]
  30. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008). [CrossRef] [PubMed]
  31. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009). [CrossRef] [PubMed]
  32. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  33. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009). [CrossRef]
  34. Z. L. Mei and T. J. Cui, “Experimental realization of a broadband bend structure using gradient index metamaterials,” Opt. Express17(20), 18354–18363 (2009). [CrossRef] [PubMed]
  35. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010). [CrossRef] [PubMed]
  36. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun.1 doi:. [CrossRef]
  37. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett.100(2), 023902 (2008). [CrossRef] [PubMed]
  38. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19(4), 2910–2915 (2011). [CrossRef] [PubMed]
  39. Y. Lu and S. C. Chen, “Direct-write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett.92(4), 041109 (2008). [CrossRef]
  40. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express15(18), 11328–11335 (2007). [CrossRef] [PubMed]
  41. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys.42(6A), 3463–3466 (2003). [CrossRef]
  42. J. Li, C. H. Wen, S. Gauza, R. Lu, and S. T. Wu, “Refractive indices of liquid crystals for display applications,” IEEE/OSA JDT.853357 (2005).
  43. S. Arlinghaus, Practical Handbook of Curve Fitting (CRC Press, 1994).
  44. HFSS, ANSYS Inc. (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited