OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 13833–13840

Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics

Pingping Xiao, Xianping Wang, Jingjing Sun, Meizhen Huang, Xianfeng Chen, and Zhuangqi Cao  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 13833-13840 (2012)
http://dx.doi.org/10.1364/OE.20.013833


View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new scheme is proposed to measure the electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PT ceramics simultaneously, in which the PMN-PT ceramics acts as the guiding layer of a symmetrical metal-cladding waveguide. As the applied electric field exerts on the waveguide, the effective refractive index (RI) (or synchronous angle) can be effectively tuned from a selected mode to another adjacent mode owing to the high sensitivity and the small spacing of the ultra-high order modes. Subsequently, a correlation between EO and CPE coefficients is established. With this correlation and the measurement of the effective RI change to the applied voltage, the quadratic EO and CPE coefficients of PMN-PT ceramics are obtained simultaneously. The obtained results are further checked by fitting the variations of effective RI to a quadratic function. Our measurement method can be extended to a wide range of other materials.

© 2012 OSA

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.2100) Materials : Electro-optical materials
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Materials

History
Original Manuscript: April 11, 2012
Revised Manuscript: May 9, 2012
Manuscript Accepted: May 14, 2012
Published: June 6, 2012

Citation
Pingping Xiao, Xianping Wang, Jingjing Sun, Meizhen Huang, Xianfeng Chen, and Zhuangqi Cao, "Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics," Opt. Express 20, 13833-13840 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-13833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. H. Haertling, “PLZT electro-optic materials and applications – a review,” Ferroelectrics75(1), 25–55 (1987). [CrossRef]
  2. T. Tamura, K. Matsuura, H. Ashida, K. Kondo, and S. Otani, “Hysteresis variations of (Pb, La)(Zr,Ti)O3 capacitors baked in a hydrogen atmosphere,” Appl. Phys. Lett.74(22), 3395–3397 (1999). [CrossRef]
  3. H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, and Y. Wang, “Transparent electro-optic ceramics and devices,” Proc. SPIE5644, 380–394 (2005). [CrossRef]
  4. S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla, “Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3-PbTiO3 system,” Mater. Lett.8(6-7), 253–255 (1989). [CrossRef]
  5. R. Zhang, B. Jiang, and W. Cao, “Elastic, piezoelectric, and dielectric properties of multidomain 0.67 Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals,” J. Appl. Phys.90(7), 3471–3475 (2001). [CrossRef]
  6. B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z. G. Ye, “Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3,” Phys. Rev. B66(5), 054104 (2002). [CrossRef]
  7. O. Noblanc, P. Gaucher, and G. Calvarin, “Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric solid solutions around the morphotropic boundary,” J. Appl. Phys.79(8), 4291–4297 (1996). [CrossRef]
  8. Y.-L. Lu, B. Gaynor, C. Hsu, G. Jin, M. Cronin-Golomb, F. Wang, J. Zhao, S.-Q. Wang, P. Yip, and A. J. Drehman, “Structural and electro-optic properties in lead magnesium niobate titanate thin films,” Appl. Phys. Lett.74(20), 3038–3040 (1999). [CrossRef]
  9. Y. L. Lu and C. Gao, “Optical limiting in lead magnesium niobate-lead titanate multilayers,” Appl. Phys. Lett.92(12), 121109 (2008). [CrossRef]
  10. B. C. Lim, P. B. Phua, W. J. Lai, and M. H. Hong, “Fast switchable electro-optic radial polarization retarder,” Opt. Lett.33(9), 950–952 (2008). [CrossRef] [PubMed]
  11. Y. K. Zou, Q. S. Chen, R. Zhang, K. K. Li, and H. Jiang, “Low voltage, high repetition rate electro-optic Q-switch,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTuZ5.
  12. L. Qiao, Q. Ye, J. L. Gan, H. W. Cai, and R. H. Qu, “Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch,” Opt. Commun.284(16-17), 3886–3890 (2011). [CrossRef]
  13. Y. T. Lin, B. Ren, X. Y. Zhao, D. Zhou, J. Chen, X. B. Li, H. Q. Xu, D. Lin, and H. S. Luo, “Large quadratic electro-optic properties of ferroelectric base 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3 single crystal,” J. Alloy. Comp.507(2), 425–428 (2010). [CrossRef]
  14. C. J. He, W. W. Ge, X. Y. Zhao, H. Q. Xu, H. S. Luo, and Z. X. Zhou, “Wavelength dependence of electro-optic effect in tetragonal lead magnesium niobate lead titanate single crystals,” J. Appl. Phys.100(11), 113119 (2006). [CrossRef]
  15. C. J. He, Z. X. Zhou, D. J. Liu, X. Y. Zhao, and H. S. Luo, “Photorefractive effect in relaxor ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 single crystal,” Appl. Phys. Lett.89(26), 261111 (2006). [CrossRef]
  16. S. E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys.82(4), 1804–1811 (1997). [CrossRef]
  17. H. G. Li, Z. Q. Cao, H. F. Lu, and Q. S. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.83(14), 2757–2759 (2003). [CrossRef]
  18. H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett.85(20), 4579–4581 (2004). [CrossRef]
  19. J. H. Gu, G. Chen, Z. Q. Cao, and Q. S. Shen, “An intensity measurement refractometer based on a symmetric metal-clad waveguide structure,” J. Phys. D Appl. Phys.41(18), 185105 (2008). [CrossRef]
  20. F. Chen, Z. Q. Cao, Q. S. Shen, X. X. Deng, B. M. Duan, W. Yuan, M. H. Sang, and S. Q. Wang, “Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide,” Opt. Express13(25), 10061–10065 (2005). [CrossRef] [PubMed]
  21. W. P. Chen and J. M. Chen, “Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am.71(2), 189–191 (1981). [CrossRef]
  22. K. K. Li, Y. Lu, and Q. Wang, “Electro-optic ceramic material and device,” U.S. patent 6, 890, 874B1 (2005).
  23. M. Cuniot-Ponsard, J. M. Desvignes, A. Bellemain, and F. Bridou, “Simulatneous characterization of the electro-optic, converse-piezoelectirc, and electroabsorptive effects in epitaxial (Sr, Ba)Nb2O6 thin films,” J. Appl. Phys.109(1), 014107 (2011). [CrossRef]
  24. K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem.74(3), 696–701 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited