OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14030–14041

Field test of classical symmetric encryption with continuous variables quantum key distribution

Paul Jouguet, Sébastien Kunz-Jacques, Thierry Debuisschert, Simon Fossier, Eleni Diamanti, Romain Alléaume, Rosa Tualle-Brouri, Philippe Grangier, Anthony Leverrier, Philippe Pache, and Philippe Painchault  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14030-14041 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the design and performance of a point-to-point classical symmetric encryption link with fast key renewal provided by a Continuous Variable Quantum Key Distribution (CVQKD) system. Our system was operational and able to encrypt point-to-point communications during more than six months, from the end of July 2010 until the beginning of February 2011. This field test was the first demonstration of the reliability of a CVQKD system over a long period of time in a server room environment. This strengthens the potential of CVQKD for information technology security infrastructure deployments.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: March 14, 2012
Revised Manuscript: May 4, 2012
Manuscript Accepted: May 7, 2012
Published: June 11, 2012

Paul Jouguet, Sébastien Kunz-Jacques, Thierry Debuisschert, Simon Fossier, Eleni Diamanti, Romain Alléaume, Rosa Tualle-Brouri, Philippe Grangier, Anthony Leverrier, Philippe Pache, and Philippe Painchault, "Field test of classical symmetric encryption with continuous variables quantum key distribution," Opt. Express 20, 14030-14041 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81, 1301–1350 (2009). [CrossRef]
  2. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” Opt. Express19, 10387–10409 (2011). [CrossRef] [PubMed]
  3. D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys.13, 123001 (2011). [CrossRef]
  4. Advanced Encryption Standard (AES), FIPS PUB 197, National Institute for Standards and Technology (2001).
  5. S. Kunz-Jacques and P. Jouguet, “Using hash-based signatures to bootstrap quantum key distribution,” arXiv:1109.2844 [quant-ph] (2011).
  6. L. M. Ioannou and M. Mosca, “A new spin on quantum cryptography: avoiding trapdoors and embracing public keys,” arXiv:1109.3235 [quant-ph] (2011).
  7. http://www.idquantique.com (2012).
  8. http://www.magiqtech.com (2012).
  9. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbit/s data encryption over a single fibre,” New J. Phys.12, 063027 (2010). [CrossRef]
  10. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett.88, 057902 (2002). [CrossRef] [PubMed]
  11. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature (London)421, 238–241 (2003). [CrossRef]
  12. A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett.95, 180503 (2005). [CrossRef] [PubMed]
  13. S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B79, 273–277 (2004). [CrossRef]
  14. S. Lorenz, J. Rigas, M. Heid, U. L. Andersen, N. Lütkenhaus, and G. Leuchs, “Witnessing effective entanglement in a continuous variable prepare&measure setup and application to a QKD scheme using postselection,” Phys. Rev. A74, 042326 (2006). [CrossRef]
  15. J. Lodewyck, M. Bloch, R. García-Patrón, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A76, 042305 (2007). [CrossRef]
  16. S. Tokunaga, K. Shirasaki, and T. Hirano, “Free-space continuous-variable quantum cryptography,” CLEO/Europe and IQEC 2007 Conference Digest1–1 (2007).
  17. B. Qi, L.-L. Huang, L. Qian, and H.-K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A76, 052323 (2007). [CrossRef]
  18. T. Symul, D. J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A76, 030303 (2007). [CrossRef]
  19. S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys.11, 045023 (2009). [CrossRef]
  20. D. Elser, T. Bartley, B. Heim, C. Wittmann, D. Sych, and G. Leuchs, “Feasibility of free space quantum key distribution with coherent polarization states,” New J. Phys.11, 045014 (2009). [CrossRef]
  21. Q. Dinh Xuan, Z. Zhang, and P. L. Voss, “A 24 km fiber-based discretely signaled continuous variable quantum key distribution system,” Opt. Express17, 24244–24249 (2009). [CrossRef]
  22. B. Heim, D. Elser, T. Bartley, M. Sabuncu, C. Wittmann, D. Sych, C. Marquardt, and G. Leuchs, “Atmospheric channel characteristics for quantum communication with continuous polarization variables,” Appl. Phys. B98, 635–640 (2010). [CrossRef]
  23. T. Symul, V. Sharma, T. C. Ralph, and P. K. Lam, “Coherent state quantum key distribution with continuous-wave laser beams,” Optical Fiber Communication Conference1–3 (2010).
  24. Y. Shen, H. Zou, L. Tian, P. Chen, and J. Yuan, “Experimental study on discretely modulated continuous-variable quantum key distribution,” Phys. Rev. A82, 022317 (2010). [CrossRef]
  25. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” arxiv:1110.3234 [quant-ph] (2011).
  26. B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key distribution through dense wavelength division multiplexing network,” New J. Phys.12, 103042 (2010). [CrossRef]
  27. http://www.quintessencelabs.com (2012).
  28. http://www.sequrenet.com (2012).
  29. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys.11, 075001 (2009). [CrossRef]
  30. https://sqt.ait.ac.at/software/ (2012).
  31. R. García-Patrón and N. J. Cerf, “Unconditional optimality of Gaussian attacks against continuous-variable QKD,” Phys. Rev. Lett.97, 190503 (2006). [CrossRef] [PubMed]
  32. M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous variable quantum cryptography,” Phys. Rev. Lett.97, 190502 (2006). [CrossRef] [PubMed]
  33. A. Leverrier, R. Alléaume, J. Boutros, G. Zémor, and P. Grangier, “Multidimensional reconciliation for continuous-variable quantum key distribution,” Phys. Rev. A77, 042325 (2008). [CrossRef]
  34. P. Jouguet, S. Kunz-Jacques, and A. Leverrier, “Long distance continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A84, 062317 (2011). [CrossRef]
  35. N. M. Wegman and L. Carter, “Universal classes of hash functions,” J. Comput. Syst. Sci.18, 143–154 (1979). [CrossRef]
  36. N. M. Wegman and L. Carter, “New hash functions and their use in authentication and set equality,” J. Comput. Syst. Sci.22, 265–279 (1981). [CrossRef]
  37. J. Lodewyck, T. Debuisschert, R. García-Patrón, R. Tualle-Brouri, N. J. Cerf, and P. Grangier, “Experimental implementation of non-Gaussian attacks on a continuous-variable quantum-key-distribution system,” Phys. Rev. Lett.98, 030503 (2007). [CrossRef] [PubMed]
  38. A. Ferenczi, P. Grangier, and F. Grosshans, “Calibration attack and defense in continuous variable quantum key distribution,” IQEC Conf. Digest IC13 (2007).
  39. H. Häseler, T. Moroder, and N. Ltkenhaus, “Testing quantum devices: practical entanglement verification in bipartite optical systems,” Phys. Rev. A77, 032303 (2007). [CrossRef]
  40. M. Matsui, “Linear cryptoanalysis method for DES cipher,” in EUROCRYPT 1993, 386–397 (1993).
  41. P. Jouguet and S. Kunz-Jacques, “High performance error correction for quantum key distribution using polar codes,” arXiv:1204.5882 [quant-ph] (2012).
  42. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of continuous-variable quantum key distribution,” Phys. Rev. A81, 062343 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited