OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14054–14063

All-solid photonic band gap fiber based distributed fiber optic pressure sensor

Wen-hui Ding and Yi Jiang  »View Author Affiliations

Optics Express, Vol. 20, Issue 13, pp. 14054-14063 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1813 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel distributed fiber optic pressure sensor based on an all-solid photonic band gap fiber is proposed and experimentally demonstrated. The sensor is fabricated by splicing a piece of the photonic crystal fiber (PCF) with a single-mode fiber (SMF), and the free end face of the PCF is filmed with a reflectivity of 99%. The cladding mode is excited at the fiber splice, resulting in the interference between the cladding mode and the core mode. The pressure position can be located by measuring the phase difference of the interferometer, and the pressure can be interrogated by measuring the height of the valley in the white-light optical spectrum. The experimental results show that the pressure and its position along the PCF can be simultaneously interrogated.

© 2012 OSA

OCIS Codes
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(280.5475) Remote sensing and sensors : Pressure measurement

ToC Category:

Original Manuscript: April 19, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: May 28, 2012
Published: June 11, 2012

Wen-hui Ding and Yi Jiang, "All-solid photonic band gap fiber based distributed fiber optic pressure sensor," Opt. Express 20, 14054-14063 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett.31(23), 3414–3416 (2006). [CrossRef] [PubMed]
  2. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification properties of Er3+-doped photonic crystal fibers,” J. Lightwave Technol.21(3), 782–788 (2003). [CrossRef]
  3. D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express14(2), 914–925 (2006). [CrossRef] [PubMed]
  4. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  5. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B81(2-3), 325–331 (2005). [CrossRef]
  6. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt.43(24), 4739–4744 (2004). [CrossRef] [PubMed]
  7. F. C. Fávero, S. M. M. Quintero, V. V. Silva, C. Martelli, A. M. B. Braga, I. C. S. Carvalho, and R. W. A. Llerena, “Photonic crystal fiber pressure sensor,” Proc. SPIE7503, 750364, 750364–4 (2009). [CrossRef]
  8. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express18(14), 15113–15121 (2010). [CrossRef] [PubMed]
  9. C. M. Jewart, S. M. Quintero, A. M. B. Braga, and K. P. Chen, “Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring,” Opt. Express18(25), 25657–25664 (2010). [CrossRef] [PubMed]
  10. S. Liang, C. X. Zhang, W. T. Lin, L. J. Li, C. Li, X. J. Feng, and B. Lin, “Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring,” Opt. Lett.34(12), 1858–1860 (2009). [CrossRef] [PubMed]
  11. X. B. Hong, J. Wu, C. Zuo, F. S. Liu, H. X. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt.50(22), 4333–4338 (2011). [CrossRef] [PubMed]
  12. X. L. Li, Q. Z. Sun, J. H. Wo, M. L. Zhang, and D. M. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol.30(8), 1113–1120 (2012). [CrossRef]
  13. K. Hotate and S. O. S. Leng, “Transversal force sensor using polarization-maintaining fiber independent of direction of applied force: proposal and experiment,” in OFS 2002: 15th Optical Fiber Sensors Conference Technical Digest (2002), Vol. 1, pp. 363–366.
  14. P. L. D. Julian, J. Zhang, V. A. Handerek, and A. J. Rogers, “Polarization switching for distributed transverse stress sensing in optical fibers using the optical Kerr effect,” J. Lightwave Technol.16(12), 2378–2384 (1998). [CrossRef]
  15. N. Shibata, A. Nakazono, and Y. Inoue, “Interference between two orthogonally polarized modes traversing a highly birefringent air-silica microstructure fiber,” J. Lightwave Technol.23(3), 1244–1252 (2005). [CrossRef]
  16. C. A. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett.36(3), 412–414 (2011). [CrossRef] [PubMed]
  17. S. O. Konorov, A. M. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express13(9), 3454–3459 (2005). [CrossRef] [PubMed]
  18. H. Y. Fu, A. C. L. Wong, P. A. Childs, H. Y. Tam, Y. B. Liao, C. Lu, and P. K. A. Wai, “Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors,” Opt. Express17(21), 18501–18512 (2009). [CrossRef] [PubMed]
  19. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  20. G. A. Cárdenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express19(8), 7596–7602 (2011). [CrossRef] [PubMed]
  21. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009). [CrossRef]
  22. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: Microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007). [CrossRef]
  23. W. C. Wong, C. C. Chan, L. H. Chen, Z. Q. Tou, and K. C. Leong, “Highly sensitive miniature photonic crystal fiber refractive index sensor based on mode field excitation,” Opt. Lett.36(9), 1731–1733 (2011). [CrossRef] [PubMed]
  24. Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photon. Technol. Lett.20(2), 75–77 (2008). [CrossRef]
  25. M. Tsubokawa, T. Higashi, and Y. Negishi, “Mode couplings due to external forces distributed along a polarization-maintaining fiber: an evaluation,” Appl. Opt.27(1), 166–173 (1988). [CrossRef] [PubMed]
  26. Z. Y. Zhang and X. J. Zhou, “Experimental study on white light interferential distributed fiber optic press sensor by multi-points pressed,” J. China Acad. Electron. Inf. Technol.1(4), 364–368 (2006).
  27. Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Appl. Opt.47(7), 925–932 (2008). [CrossRef] [PubMed]
  28. Y. Li, L. A. Chen, E. Harris, and X. Y. Bao, “Double-pass in-line fiber taper Mach-Zehnder interferometer sensor,” IEEE Photon. Technol. Lett.22(23), 1750–1752 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited