OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14130–14136

Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detection

Xiaohong Song, Stefan Declair, Torsten Meier, Artur Zrenner, and Jens Förstner  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14130-14136 (2012)
http://dx.doi.org/10.1364/OE.20.014130


View Full Text Article

Enhanced HTML    Acrobat PDF (1403 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a finite-difference time-domain method, we theoretically investigate the optical spectra of crossing perpendicular photonic crystal waveguides with quantum dots embedded in the central rod. The waveguides are designed so that the light mainly propagates along one direction and the cross talk is greatly reduced in the transverse direction. It is shown that when a quantum dot (QD) is resonant with the cavity, strong coupling can be observed via both the transmission and crosstalk spectrum. If the cavity is far off-resonant from the QD, both the cavity mode and the QD signal can be detected in the transverse direction since the laser field is greatly suppressed in this direction. This structure could have strong implications for resonant excitation and in-plane detection of QD optical spectroscopy.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Photonic Crystals

History
Original Manuscript: March 14, 2012
Revised Manuscript: April 8, 2012
Manuscript Accepted: May 3, 2012
Published: June 11, 2012

Citation
Xiaohong Song, Stefan Declair, Torsten Meier, Artur Zrenner, and Jens Förstner, "Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detection," Opt. Express 20, 14130-14136 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14130


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).
  2. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006). [CrossRef]
  3. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73(3), 565–582 (2001). [CrossRef]
  4. B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys, and P. Grangier, “Controlled single-photon emission from a single trapped two-level atom,” Science309(5733), 454–456 (2005). [CrossRef] [PubMed]
  5. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature431(7012), 1075–1078 (2004). [CrossRef] [PubMed]
  6. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic Generation of Single Photons from One Atom Trapped in a Cavity,” Science303(5666), 1992–1994 (2004). [CrossRef] [PubMed]
  7. P. Yao, V. S. C. Manga Rao, and S. Hughes, “On-chip single photon sources using planar photonic crystals and single quantum dots,” Laser Photon. Rev.4(4), 499–516 (2010). [CrossRef]
  8. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett.96(11), 117401 (2006). [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004). [CrossRef] [PubMed]
  10. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004). [CrossRef] [PubMed]
  11. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  12. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007). [CrossRef] [PubMed]
  13. E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys.5(3), 203–207 (2009). [CrossRef]
  14. S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Höfling, A. Forchel, and P. Michler, “Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy,” Nat. Photonics3(12), 724–728 (2009). [CrossRef]
  15. D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vucković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett.104(7), 073904 (2010). [CrossRef] [PubMed]
  16. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett.103(20), 207403 (2009). [CrossRef] [PubMed]
  17. M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, “Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities,” Phys. Rev. Lett.106(22), 227402 (2011). [CrossRef] [PubMed]
  18. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A78(4), 045802 (2008). [CrossRef]
  19. K. Koshino, “Theory of resonance fluorescence from a solid-state cavity QED system: effects of pure dephasing,” Phys. Rev. B84, 033824 (2011).
  20. A. Majumdar, A. Papageorge, E. D. Kim, M. Bajcsy, H. Kim, P. Petroff, and J. Vučković, “Probing of single quantum dot dressed states via an off-resonant cavity,” Phys. Rev. B84(8), 085310 (2011). [CrossRef]
  21. P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B80(16), 165128 (2009). [CrossRef]
  22. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature450(7171), 862–865 (2007). [CrossRef] [PubMed]
  23. P. Yao and S. Hughes, “Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system,” Phys. Rev. B80(16), 165128 (2009). [CrossRef]
  24. F. S. F. Brossard, X. L. Xu, D. A. Williams, M. Hadjipanayi, M. Hugues, M. Hopkinson, X. Wang, and R. A. Taylor, “Strongly coupled single quantum dot in a photonic crystal waveguide cavity,” Appl. Phys. Lett.97(11), 111101 (2010). [CrossRef]
  25. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett.23(23), 1855–1857 (1998). [CrossRef] [PubMed]
  26. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005), 3rd edition.
  27. V. S. Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun,” Phys. Rev. Lett.99(19), 193901 (2007). [CrossRef] [PubMed]
  28. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77(18), 3787–3790 (1996). [CrossRef] [PubMed]
  29. A. Mekis, S. Fang, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided W.9(12), 502–504 (1999). [CrossRef]
  30. M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Co.11(4), 152–154 (2001). [CrossRef]
  31. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microw. Opt. Technol. Lett.27(5), 334–339 (2000). [CrossRef]
  32. C. Dineen, J. Förstner, A. R. Zakharian, J. V. Moloney, and S. W. Koch, “Electromagnetic field structure and normal mode coupling in photonic crystal nanocavities,” Opt. Express13(13), 4980–4985 (2005). [CrossRef] [PubMed]
  33. S. Declair, T. Meier, and J. Förstner, “Numerical Investigation of the Coupling Between Microdisk Modes and Quantum Dots,” Phys. Status Solidi8(4c), 1254–1257 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited