OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14201–14212

Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer

Volkmar Schultze, Rob IJsselsteijn, Theo Scholtes, Stefan Woetzel, and Hans-Georg Meyer  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14201-14212 (2012)
http://dx.doi.org/10.1364/OE.20.014201


View Full Text Article

Enhanced HTML    Acrobat PDF (3219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare the performance of two methods for the synchronization of the atomic spins in optically pumped magnetometers: intensity modulation of the pump light and the classical Mx method using B1 field modulation. Both techniques use the same set-up and measure the resulting features of the light after passing a micro-fabricated Cs cell. The intensity-modulated pumping shows several advantages: better noise-limited magnetic field sensitivity, misalignment between pumping and spin synchronization is excluded, and magnetometer arrays without any cross-talk can be easily set up.

© 2012 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7490) Atomic and molecular physics : Zeeman effect
(230.0230) Optical devices : Optical devices
(230.1150) Optical devices : All-optical devices

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 19, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: May 31, 2012
Published: June 11, 2012

Citation
Volkmar Schultze, Rob IJsselsteijn, Theo Scholtes, Stefan Woetzel, and Hans-Georg Meyer, "Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer," Opt. Express 20, 14201-14212 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Lasers Eng.43(3-5), 387–401 (2005). [CrossRef]
  2. E. B. Aleksandrov and A. K. Vershovskii, “Modern radio-optical methods in quantum magnetometry,” Phys.- Usp.52(6), 573–601 (2009). [CrossRef]
  3. I. M. Savukov, “Ultra-sensitive optical atomic magnetometers and their applications,” in: Advances in Optical and Photonic Devices, K. Y Kim, ed. (INTECH, Croatia, 2010).
  4. J. Kitching, S. Knappe, and A. Donley, “Atomic Sensors – A Review,” IEEE Sens. J.11(9), 1749–1758 (2011). [CrossRef]
  5. A. L. Bloom, “Principles of Operation of the Rubidium Vapor Magnetometer,” Appl. Opt.1(1), 61–68 (1962). [CrossRef]
  6. E. B. Alexandrov, M. V. Balabas, A. S. Pazgalev, A. K. Vershovskii, and N. N. Yakobson, “Double-Resonance Atomic Magnetometers: from Gas Discharge to Laser Pumping,” Laser Phys.6, 244–251 (1996).
  7. S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, and A. Weis, “A high-sensitivity laser-pumped Mx magnetometer,” Eur. Phys. J. D38(2), 239–247 (2006). [CrossRef]
  8. W. E. Bell and A. L. Bloom, “Optically driven spin precession,” Phys. Rev. Lett.6(6), 280–281 (1961). [CrossRef]
  9. L. N. Novikov, V. G. Pokazan'ev, and G. V. Skrotskii, “Coherent phenomena in systems interacting with resonant radiation,” Sov. Phys. Usp.13(3), 384–399 (1970). [CrossRef]
  10. D. Suter, M. Rosatzin, and J. Mlynek, “Optically driven spin nutations in the ground state of atomic sodium,” Phys. Rev. A41(3), 1634–1644 (1990). [CrossRef] [PubMed]
  11. M. Rosatzin, D. Suter, W. Lange, and J. Mlynek, “Phase and amplitude variations of optically induced spin transients,” J. Opt. Soc. Am. B7(7), 1231–1238 (1990). [CrossRef]
  12. S. Pustelny, M. Koczwara, L. Cincio, and W. Gawlik, “Tailoring quantum superpositions with linearly polarized amplitude-modulated light,” Phys. Rev. A83(4), 043832 (2011). [CrossRef]
  13. W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, “Improved Limit on the Permanent Electric Dipole Moment of 199Hg,” Phys. Rev. Lett.102(10), 101601 (2009). [CrossRef] [PubMed]
  14. S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, and W. Gawlik, “Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light,” J. Appl. Phys.103(6), 063108 (2008). [CrossRef]
  15. D. F. Jackson Kimball, L. R. Jacome, S. Guttikonda, E. J. Bahr, and L. F. Chan, “Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line,” J. Appl. Phys.106(6), 063113 (2009). [CrossRef]
  16. R. Jimenez-Martinez, W. C. Griffith, Y.-J. Wang, S. Knappe, J. Kitching, K. Smith, and M. Prouty, “Sensitivity Comparison of Mx and Frequency-Modulated Bell-Bloom Cs Magnetometers in a Microfabricated Cell,” IEEE Trans. Instrum. Meas.59(2), 372–378 (2010). [CrossRef]
  17. A. Cassimi, B. Cheron, and J. Hamel, “4He optical pumping with intensity modulated laser light,” J. Phys. II1(2), 123–133 (1991). [CrossRef]
  18. H. Gilles, B. Cheron, and J. Hamel, “Magnetometre a 4He pompe par laser. Isotropie spatiale des signaux de resonance en resonance magnetique et en modulation de lumiere,” J. Phys. II2(4), 781–799 (1992). [CrossRef]
  19. S. Woetzel, V. Schultze, R. Ijsselsteijn, T. Schulz, S. Anders, R. Stolz, and H.-G. Meyer, “Microfabricated atomic vapor cell arrays for magnetic field measurements,” Rev. Sci. Instrum.82(3), 033111 (2011). [CrossRef] [PubMed]
  20. V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B100(4), 717–724 (2010). [CrossRef]
  21. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett.85(26), 6409–6411 (2004). [CrossRef]
  22. S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, and J. Kitching, “Microfabricated atomic clocks and magnetometers,” J. Opt. A, Pure Appl. Opt.8(7), S318–S322 (2006). [CrossRef]
  23. A. H. Couture, T. B. Clegg, and B. Driehuys, “Pressure shifts and broadening of the Cs D1 and D2 lines by He, N2, and Xe at densities used for optical pumping and spin exchange polarization,” J. Appl. Phys.104(9), 094912 (2008). [CrossRef]
  24. C. B. Alcock, V. P. Itkin, and M. K. Horrigan, “Vapor pressure equations for the metallic elements,” Can. Metall. Quart.23, 309–313 (1984).
  25. J.-P. Ruske, “Wellenleitermodulatoren für neue Einsatzgebiete,” Optik Photonik5(1), 49–52 (2010). [CrossRef]
  26. E. B. Alexandrov, M. V. Balabas, A. K. Vershovski, and A. S. Pazgalev, “Experimental Demonstration of the Sensitivity of an Optically Pumped Quantum Magnetometer,” Tech. Phys.49(6), 779–783 (2004). [CrossRef]
  27. S. Groeger, A. S. Pazgalev, and A. Weis, “Comparison of discharge lamp and laser pumped cesium magnetometers,” Appl. Phys. B80(6), 645–654 (2005). [CrossRef]
  28. G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B22(1), 77–87 (2005). [CrossRef]
  29. S. J. Smulin, I. M. Savukov, G. Vasilakis, R. K. Ghosh, and M. V. Romalis, “Low-noise high-density alkali-metal scalar magnetometer,” Phys. Rev. A80(3), 033420 (2009). [CrossRef]
  30. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation,” Phys. Rev. Lett.89(13), 130801 (2002). [CrossRef] [PubMed]
  31. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature422(6932), 596–599 (2003). [CrossRef] [PubMed]
  32. T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, and H.-G. Meyer, “Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell,” Phys. Rev. A84(4), 043416 (2011). [CrossRef]
  33. E. B. Aleksandrov, M. V. Balabas, A. K. Vershovskii, A. E. Ivanov, N. N. Yakobson, V. L. Velichanskii, and N. V. Senkov, “Laser Pumping in the Scheme of an Mx-Magnetometer,” Opt. Spectrosc.78, 292–298 (1995).
  34. N. Castagna, G. Bison, G. Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, and A. Weis, “A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells,” Appl. Phys. B96(4), 763–772 (2009). [CrossRef]
  35. P. D. D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, and L.-A. Liew, “Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique,” Appl. Phys. Lett.90(8), 081102 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited