## Generating arbitrary photon-number entangled states for continuous-variable quantum informatics |

Optics Express, Vol. 20, Issue 13, pp. 14221-14233 (2012)

http://dx.doi.org/10.1364/OE.20.014221

Enhanced HTML Acrobat PDF (1337 KB)

### Abstract

We propose two experimental schemes that can produce an arbitrary photon-number entangled state (PNES) in a finite dimension. This class of entangled states naturally includes non-Gaussian continuous-variable (CV) states that may provide some practical advantages over the Gaussian counterparts (two-mode squeezed states). We particularly compare the entanglement characteristics of the Gaussian and the non-Gaussian states in view of the degree of entanglement and the Einstein-Podolsky-Rosen correlation, and further discuss their applications to the CV teleportation and the nonlocality test. The experimental imperfection due to the on-off photodetectors with nonideal efficiency is also considered in our analysis to show the feasibility of our schemes within existing technologies.

© 2012 OSA

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.6570) Quantum optics : Squeezed states

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: April 27, 2012

Revised Manuscript: May 31, 2012

Manuscript Accepted: May 31, 2012

Published: June 12, 2012

**Citation**

Su-Yong Lee, Jiyong Park, Hai-Woong Lee, and Hyunchul Nha, "Generating arbitrary photon-number entangled states for continuous-variable quantum informatics," Opt. Express **20**, 14221-14233 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14221

Sort: Year | Journal | Reset

### References

- A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. Lett.47, 777–780 (1935).
- J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physics1, 195–200 (1964).
- J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969). [CrossRef]
- M. Genovese, “Research on hidden variable theories: a review of recent progresses,” Phys. Rep.413, 319–396. (2005). [CrossRef]
- P. W. Shor, “Algorithms for quantum computer computation: discrete logarithms and factoring,” in Proceedings of the Symposium on the Foundations of Computer Science, Los Alamitos, California (IEEE, 1994), pp. 124–134.
- C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
- S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77, 513–577 (2005). [CrossRef]
- S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett.80, 869– 872 (1998). [CrossRef]
- C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” arXiv:1110.3234 [quant-ph] (2011).
- S. Takeda, H. Benichi, T. Mizuta, N. Lee, J. Yoshikawa, and A. Furusawa, “Quantum mode filtering of non-Gaussian states for teleportation-based quantum information processing,” arXiv:1202.2418.
- T. Kiesel, W. Vogel, and B. Hage, “Entangled qubits in a non-Gaussian quantum state,” Phys. Rev. A83, 062319 (2011). [CrossRef]
- E. S. Gomez, W. A. T. Nogueira, C. H. Monken, and G. Lima, “Quantifying the non-Gaussianity of the state of spatially correlated down-converted photons,” Opt. Express20, 3753–3772 (2012). [CrossRef] [PubMed]
- T. Opatrný, G. Kurizki, and D.-G. Welsch, “Improvement on teleportation of continuous variables by photon subtraction via conditional measurement,” Phys. Rev. A61, 032302 (2000). [CrossRef]
- P. T. Cochrane, T. C. Ralph, and G. J. Milburn, “Teleportation improvement by conditional measurements on the two-mode squeezed vacuum,” Phys. Rev. A65, 062306 (2002). [CrossRef]
- S. Olivares, M. G. A. Paris, and R. Bonifacio, “Teleportation improvement by inconclusive photon subtraction,” Phys. Rev. A67, 032314 (2003). [CrossRef]
- A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A73, 042310 (2006). [CrossRef]
- Y. Yang and F.-L. Li, “Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement,” Phys. Rev. A80, 022315 (2009). [CrossRef]
- F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A76, 022301 (2007). [CrossRef]
- F. Dell’Anno, S. De Siena, and F. Illuminati, “Realistic continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A81, 012333 (2010). [CrossRef]
- S.-Y. Lee, S.-W. Ji, H.-J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition,” Phys. Rev. A84, 012302 (2011). [CrossRef]
- A. Kitagawa, M. Takeoka, K. Wakui, and M. Sasaki, “Effective squeezing enhancement via measurement-induced non-Gaussian operation and its application to the dense coding scheme,” Phys. Rev. A72, 022334 (2005). [CrossRef]
- S. Lloyd and S. L. Braunstein, “Quantum computation over continuous variables,” Phys. Rev. Lett.82, 1784– 1787 (1999). [CrossRef]
- S. D. Bartlett and B. C. Sanders, “Efficient classical simulation of optical quantum information circuits,” Phys. Rev. Lett.89, 207903 (2002). [CrossRef] [PubMed]
- H. Nha and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett.93, 020401 (2004). [CrossRef] [PubMed]
- R. García-Patrón, J. Fiurášek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Proposal for a loophole-free Bell test using homodyne detection,” Phys. Rev. Lett.93, 130409 (2004). [CrossRef] [PubMed]
- M. Allegra, P. Giorda, and M. G. A. Paris, “Role of initial entanglement and non-Gaussianity in the decoherence of photon-number entangled states evolving in a noisy channel,” Phys. Rev. Lett.105, 100503 (2010). [CrossRef] [PubMed]
- M. Allegra, P. Giorda, and M. G. A. Paris, “Decoherence of Gaussian and nonGaussian photon-number entangled states in a noisy channel,” Int. J. Quant. Inf.9, 27–38 (2011). [CrossRef]
- K. K. Sabapathy, J. S. Ivan, and R. Simon, “Robustness of non-Gaussian entanglement against noisy amplifier and attenuator environments,” Phys. Rev. Lett.107, 130501 (2011). [CrossRef] [PubMed]
- J. Lee, M. S. Kim, and H. Nha, “Comment on “Role of initial entanglement and non-Gaussianity in the decoherence of photon-number entangled states evolving in a noisy channel”,” Phys. Rev. Lett.107, 238901 (2011). [CrossRef] [PubMed]
- H. Nha, S.-Y. Lee, S.-W. Ji, and M. S. Kim, “Efficient entanglement criteria beyond Gaussian limits using Gaussian measurements,” Phys. Rev. Lett.108, 030503 (2012). [CrossRef] [PubMed]
- H. Nha, G.-J. Milburn, and H. J. Carmichael, “Linear amplification and quantum cloning for non-Gaussian continuous variables,” New J. Phys.12, 103010 (2010). [CrossRef]
- G. S. Agarwal, “Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission,” Phys. Rev. Lett.57, 827–830 (1986). [CrossRef] [PubMed]
- C. C. Gerry, J. Mimih, and R. Birrittella, “State-projective scheme for generating pair coherent states in traveling-wave optical fields,” Phys. Rev. A84, 023810 (2011). [CrossRef]
- A. Gábris and G. S. Agarwal, “Quantuem teleportation with pair-coherent states,” Int. J. Quantum Inf.5, 305–309 (2007). [CrossRef]
- C. C. Gerry and J. Mimih, “Heisenberg-limited interferometry with pair coherent states and parity measurements,” Phys. Rev. A82, 013831 (2010). [CrossRef]
- A. Gilchrist, P. Deuar, and M. D. Reid, “Contradiction of quantum mechanics with local hidden variables for quadrature phase amplitude measurements,” Phys. Rev. Lett.80, 3169–3172 (1998). [CrossRef]
- S. Daffer and P. L. Knight, “Generating optimal states for a homodyne Bell test,” Phys. Rev. A72, 034101 (2005). [CrossRef]
- W. J. Munro, “Optimal states for Bell-inequality violations using quadrature-phase homodyne measurements,” Phys. Rev. A59, 4197–4201 (1999). [CrossRef]
- J. Wenger, M. Hafezi, F. Grosshans, R. Tualle-Brouri, and P. Grangier, “Maximal violation of Bell inequalities using continuous-variable measurements,” Phys. Rev. A67, 012105 (2003). [CrossRef]
- M. S. Kim, H. Jeong, A. Zavatta, V. Parigi, and M. Bellini, “Scheme for proving the bosonic commutation relation using single-photon interference,” Phys. Rev. Lett.101, 260401 (2008). [CrossRef]
- A. Zavatta, V. Parigi, M. S. Kim, H. Jeong, and M. Bellini, “Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields,” Phys. Rev. Lett.103, 140406 (2009). [CrossRef] [PubMed]
- J. Park, S.-Y. Lee, H.-J. Kim, and H.-W. Lee, “Cavity-QED-based scheme for verification of the photon commutation relation,” New J. Phys.12, 033019 (2010). [CrossRef]
- H.-J. Kim, J. Park, and H.-W. Lee, “Cavity-QED based scheme for realization of photon annihilation and creation operations and their combinations,” J. Opt. Soc. Am. B27, 464–475 (2010). [CrossRef]
- A. Zavatta, J. Fiurasek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics5, 52 (2011) [CrossRef]
- S.-Y. Lee and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A82, 053812 (2010). [CrossRef]
- J. Park, S.-Y. Lee, H.-W. Lee, and H. Nha, “Enhanced Bell violation by a coherent superposition of photon subtraction and addition,” J. Opt. Soc. Am. B29, 906–911 (2012). [CrossRef]
- K. Banaszek and K. Wódkiewicz, “Nonlocality of the Einstein–Podolsky–Rosen state in the Wigner representation,” Phys. Rev. A58, 4345–4347 (1998). [CrossRef]
- K. Banaszek and K. Wódkiewicz, “Testing quantum nonlocality in phase space,” Phys. Rev. Lett.82, 2009–2013 (1999). [CrossRef]
- A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and P. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett.98, 030502 (2007). [CrossRef] [PubMed]
- A recent experiment achieved a higher-squeezing level ∼6.8dB of a pulsed light at the wavelength λ =1500nm in optical fiber [51]. For a long-distance quantum communication, however, one may require a quantum memory to store the quantum state of light. For this purpose, alkali atoms have been employed with the wavelength range λ ∼800nm, e.g. [52]. Furthermore, the thermal photon noise that can be detrimental to the quantum nature of light usually increases with the wavelength, so we here compare the PNES with the pulsed squeezed light of λ =850nm reported in [49].
- R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, “Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers,” Opt. Lett.33, 116–118 (2008). [CrossRef] [PubMed]
- B. Julsgarrd, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature432, 482–486 (2004). [CrossRef]
- P. Marian and T. A. Marian, “Continuous-variable teleportation in the characteristic-function description,” Phys. Rev. A74, 042306 (2006). [CrossRef]
- H. Jeong, W. Son, M. S. Kim, D. Ahn, and C. Brukner, “Quantum nonlocality test for continuous-variable states with dichotomic observables,” Phys. Rev. A67, 012106 (2003). [CrossRef]
- S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 1997).
- D. T. Pegg, L. S. Phillips, and S. M. Barnett, “Optical state truncation by projection synthesis,” Phys. Rev. Lett.81, 1604–1606 (1998). [CrossRef]
- G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics4, 316–319 (2010). [CrossRef]
- D. Mogilevtsev, “Diagonal element inference by direct detection,” Opt. Commun.156, 307–310 (1998). [CrossRef]
- D. Mogilevtsev, “Reconstruction of quantum states with binary detectors,” Acta Phys. Slov.49, 743–478 (1999).
- A. R. Rossi, S. Olivares, and M. G. A. Paris, “Photon statistics without counting photons,” Phys. Rev. A70, 055801 (2004). [CrossRef]
- D. Achilles, C. Silberhorn, C. Œliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett.28, 2387–2389 (2003). [CrossRef] [PubMed]
- M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A68, 043814 (2003). [CrossRef]
- G. Brida, M. Genovese, M. Gramegna, M. G. A. Paris, E. Predazzi, and E. Cagliero, “On the reconstruction of diagonal elements of density matrix of quantum optical states by on/off detectors,” Open Syst. Inf. Dyn.13, 333–341 (2006). [CrossRef]
- A. Tipsmark, R. Dong, A. Laghaout, P. Marek, M. Jezek, and U. L. Andersen, “Experimental demonstration of a Hadamard gate for coherent state qubits,” Phys. Rev. A84, 050301(R) (2011). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.