OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14308–14320

High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier

Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, Ivo Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14308-14320 (2012)
http://dx.doi.org/10.1364/OE.20.014308


View Full Text Article

Enhanced HTML    Acrobat PDF (1722 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 16, 2012
Revised Manuscript: May 14, 2012
Manuscript Accepted: June 5, 2012
Published: June 12, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, Ivo Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, "High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier," Opt. Express 20, 14308-14320 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14308


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B-Lasers Opt.74(9), S97–S101 (2002). [CrossRef]
  3. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt. Lett.25(5), 320–322 (2000). [CrossRef] [PubMed]
  4. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011). [CrossRef] [PubMed]
  5. Y. Li, M. Breivik, C. Y. Feng, B. O. Fimland, and L. F. Lester, “A low repetition rate all-active monolithic passively mode-locked quantum-dot laser,” IEEE Photon. Technol. Lett.23(14), 1019–1021 (2011). [CrossRef]
  6. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express14(7), 2798–2804 (2006). [CrossRef] [PubMed]
  7. S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt.11(2), 020501 (2006). [CrossRef] [PubMed]
  8. S. M. Zhuo, J. X. Chen, S. S. Xie, L. Q. Zheng, Z. B. Hong, and X. S. Jiang, “Nonlinear optical microscopy for visualizing dermal structural assembly in normal and pathological human dermis,” Laser Phys. Lett.6(10), 764–767 (2009). [CrossRef]
  9. H. Yokoyama, A. Sato, H. C. Guo, K. Sato, M. Mure, and H. Tsubokawa, “Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers,” Opt. Express16(22), 17752–17758 (2008). [CrossRef] [PubMed]
  10. M. Kuramoto, N. Kitajima, H. C. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, “Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source,” Opt. Lett.32(18), 2726–2728 (2007). [CrossRef] [PubMed]
  11. K. Taira, T. Hashimoto, and H. Yokoyama, “Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode,” Opt. Express15(5), 2454–2458 (2007). [CrossRef] [PubMed]
  12. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009). [CrossRef] [PubMed]
  13. I. H. Chen, S. W. Chu, C. K. Sun, P. C. Cheng, and B. L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti: sapphire and Cr: forsterite laser sources,” Opt. Quantum Electron.34(12), 1251–1266 (2002). [CrossRef]
  14. M. C. Chan, T. M. Liu, S. P. Tai, and C. K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt.10(5), 054006 (2005). [CrossRef] [PubMed]
  15. W. J. Lee, C. F. Lee, S. Y. Chen, Y. S. Chen, and C. K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt.15(4), 046012 (2010). [CrossRef] [PubMed]
  16. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007). [CrossRef]
  17. X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett.78(19), 2825–2827 (2001). [CrossRef]
  18. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005). [CrossRef]
  19. M. G. Thompson, A. R. Rae, R. V. Mo Xia, Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron.15(3), 661–672 (2009). [CrossRef]
  20. M. A. Cataluna, Y. Ding, D. I. Nikitichev, K. A. Fedorova, and E. U. Rafailov, “High-power versatile picosecond pulse generation from mode-locked quantum-dot laser diodes,” IEEE J. Sel. Top. Quantum Electron.17(5), 1302–1310 (2011). [CrossRef]
  21. T. W. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron.40(11), 1527–1539 (2004). [CrossRef]
  22. Y. Ding, M. A. Cataluna, D. Nikitichev, I. Krestnikov, D. Livshits, and E. Rafailov, “Broad repetition-rate tunable quantum-dot external-cavity passively mode-locked laser with extremely narrow radio frequency linewidth,” Appl. Phys. Express4(6), 062703 (2011). [CrossRef]
  23. Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Fundamental and harmonic mode-locking with pulse repetition rate between 200 MHz and 6.8 GHz in a quantum-dot external-cavity laser,” in Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC),2011Conference on and 12th European Quantum Electronics Conference, (Munich, Germany, 2011), p. CF_P23.
  24. M. Xia, M. G. Thompson, R. V. Penty, and I. H. White, “External-cavity mode-locked quantum-dot laser diodes for low repetition rate, sub-picosecond pulse generation,” IEEE J. Sel. Top. Quantum Electron.17(5), 1264–1271 (2011). [CrossRef]
  25. Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively modelocked laser with high peak power and pulse energy,” Electron. Lett.46(22), 1516–1517 (2010). [CrossRef]
  26. R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett.97(2), 021101 (2010). [CrossRef]
  27. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods8(5), 393–399 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited