OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14471–14476

High power Yb-doped photonic bandgap fiber oscillator at 1178 nm

Xinyan Fan, Meishin Chen, Akira Shirakawa, Ken-ichi Ueda, Christina B. Olausson, Jens K. Lyngsø, and Jes Broeng  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14471-14476 (2012)
http://dx.doi.org/10.1364/OE.20.014471


View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ytterbium-doped solid-core photonic bandgap fiber oscillator in an all-fiber format is investigated for high power at an extreme long wavelength. The photonic bandgap fiber is spliced with two fiber Bragg gratings to compose the cavity. The sharp-cut bandpass distributed filtering effect of the photonic bandgap fibers efficiently suppresses amplified spontaneous emission in the conventional high-gain region. Fine adjustment of the short cut-off wavelength by coiling with tighter diameter is performed to suppress parasitic lasing. A record output power of 53.6 W with a slope efficiency of 53% at 1178 nm was demonstrated.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3510) Lasers and laser optics : Lasers, fiber
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 23, 2012
Revised Manuscript: April 12, 2012
Manuscript Accepted: April 24, 2012
Published: June 13, 2012

Citation
Xinyan Fan, Meishin Chen, Akira Shirakawa, Ken-ichi Ueda, Christina B. Olausson, Jens K. Lyngsø, and Jes Broeng, "High power Yb-doped photonic bandgap fiber oscillator at 1178 nm," Opt. Express 20, 14471-14476 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14471


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. A. Denman, P. D. Hillman, G. T. Moore, J. M. Telle, J. E. Preston, J. D. Drummond, and R. Q. Fugate, “50-W CW single frequency 589-nm FASOR,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper 698.
  2. R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express12(5), 785–790 (2004). [CrossRef] [PubMed]
  3. L. R. Taylor, Y. Feng, and D. B. Calia, “50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers,” Opt. Express18(8), 8540–8555 (2010). [CrossRef] [PubMed]
  4. L. Taylor, Y. Feng, and D. Bonaccini Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express17(17), 14687–14693 (2009). [CrossRef] [PubMed]
  5. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express15(9), 5473–5476 (2007). [CrossRef] [PubMed]
  6. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B24(8), 1749–1755 (2007). [CrossRef]
  7. B. H. Chapman, E. J. R. Kelleher, S. V. Popov, K. M. Golant, J. Puustinen, O. Okhotnikov, and J. R. Taylor, “Picosecond bismuth-doped fiber MOPFA for frequency conversion,” Opt. Lett.36(19), 3792–3794 (2011). [CrossRef] [PubMed]
  8. J. Ota, A. Shirakawa, and K. Ueda, “High-power Yb-doped double-clad fiber laser directly operating at 1178nm,” Jpn. J. Appl. Phys.45(4), L117–L119 (2006). [CrossRef]
  9. H. Maruyama, A. Shirakawa, and K. Ueda, “1178nm linearly-polarized all fiber laser,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007, Technical Digest (CD) (Optical Society of America, 2007), paper TuA4–3.
  10. M. P. Kalita, S. U. Alam, C. Codemard, S. Yoo, A. J. Boyland, M. Ibsen, and J. K. Sahu, “Multi-watts narrow-linewidth all fiber Yb-doped laser operating at 1179 nm,” Opt. Express18(6), 5920–5925 (2010). [CrossRef] [PubMed]
  11. A. Shirakawa, C. B. Olausson, H. Maruyama, K. Ueda, J. K. Lyngsø, and J. Broeng, “High power ytterbium fiber lasers at extremely long wavelengths by photonic bandgap fiber technology,” Opt. Fiber Technol.16(6), 449–457 (2010). [CrossRef]
  12. C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, “Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre,” Opt. Express16(18), 13657–13662 (2008). [CrossRef] [PubMed]
  13. R. Goto, K. Takenaga, K. Okada, M. Kashiwagi, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, and K. Himeno, “Cladding-pumped Yb-doped solid photonic bandgap fiber for ASE suppression in shorter wavelength region,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuJ5.
  14. H. Maruyama, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, B. Mangan, and J. Broeng, “High-power Yb-doped solid-core photonic bandgap fiber amplifier at 1150-1200nm,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FTuG5.
  15. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009). [CrossRef] [PubMed]
  16. C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, and K. Ueda, “167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm,” Opt. Express18(16), 16345–16352 (2010). [CrossRef] [PubMed]
  17. A. Shirakawa, M. Chen, X. Fan, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “Single-frequency photonic bandgap fiber amplifier at 1178 nm,” in Advanced Solid-State Photonics, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AT1A.5.
  18. R. Goto, E. C. Mägi, and S. D. Jackson, “Narrow-linewidth, Yb3+-doped, hybrid microstructured fibre laser operating at 1178 nm,” Electron. Lett.45(17), 877–878 (2009). [CrossRef]
  19. K. Takenaga, S. Tanigawa, R. Goto, M. Kashiwagi, and S. Matsuo, “Linearly-polarized lasing at 1180 nm using polarization-maintaining Yb-doped solid photonic bandgap fiber,” in 35th European Conference on Optical Communication (Vienna, Austria, 2009), P1.10.
  20. M. Kashiwagi, K. Takenaga, K. Ichii, T. Kitabayashi, S. Tanigawa, K. Shima, S. Matsuo, M. Fujimaki, and K. Himeno, “Over 10 W output linearly-polarized single stage fiber laser oscillating above 1160 nm using Yb-doped polarization-maintaining solid photonic bandgap fiber,” IEEE J. Quantum Electron.47(8), 1136–1141 (2011). [CrossRef]
  21. L. Bigot, G. Bouwmans, Y. Quiquempois, A. Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express17(12), 10105–10112 (2009). [CrossRef] [PubMed]
  22. R. Goto, I. Fsaifes, A. Baz, L. Bigot, K. Takenaga, S. Matsuo, and S. D. Jackson, “UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber,” Opt. Express19(14), 13525–13530 (2011). [CrossRef] [PubMed]
  23. Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, “Thermal effects in kilowatt all-fiber MOPA,” Opt. Express19(16), 15162–15172 (2011). [CrossRef] [PubMed]
  24. A. Shirakawa, M. Kamijo, J. Ota, K. Ueda, K. Mizuuchi, H. Furuya, and K. Yamamoto, “Characteristics of linearly polarized Yb-doped fiber laser in an all-fiber configuration,” IEEE Photon. Technol. Lett.19(20), 1664–1666 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited