OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14656–14662

Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles

Prathamesh Pavaskar, Jesse Theiss, and Stephen B. Cronin  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14656-14662 (2012)
http://dx.doi.org/10.1364/OE.20.014656


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Thin Au films (~5nm) are known to form island-like structures with small gaps between the islands, which produce intense electric field “hot spots” under visible illumination. In this work, we perform finite difference time domain (FDTD) simulations based on experimentally observed high resolution transmission electron microscope (HRTEM) images of these films in order to study the nature of the “hot spots” in more detail. Specifically, we study the dependence of the electric field intensity in the hot spots on the surrounding film environment and on the size of the nanogaps. From our simulations, we show that the surrounding film contributes significantly to the electric field intensity at the hot spot by focusing energy to it. Widening of the gap size causes a decrease in the intensity at the hot spot. However, these island-like nanoparticle hot spots are far less sensitive to gap size than nanoparticle dimer geometries, studied previously. In fact, the main factor in determining the hot spot intensity is the focusing effect of the surrounding nano-islands. We show that these random Au island films outperform more sophisticated geometries of spherical nanoparticle clusters that have been optimized using an iterative optimization algorithm.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 27, 2012
Revised Manuscript: May 30, 2012
Manuscript Accepted: May 31, 2012
Published: June 15, 2012

Citation
Prathamesh Pavaskar, Jesse Theiss, and Stephen B. Cronin, "Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles," Opt. Express 20, 14656-14662 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kneipp, H. Kneipp, P. Corio, S. D. M. Brown, K. Shafer, J. Motz, L. T. Perelman, E. B. Hanlon, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes,” Phys. Rev. Lett.84(15), 3470–3473 (2000). [CrossRef] [PubMed]
  2. P. Corio, S. D. M. Brown, A. Marucci, M. A. Pimenta, K. Kneipp, G. Dresselhaus, and M. S. Dresselhaus, “Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces,” Phys. Rev. B61(19), 13202–13211 (2000). [CrossRef]
  3. W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, “Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions,” J. Am. Chem. Soc.1(8), 929–936 (2011). [CrossRef]
  4. W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, “Plasmonic Enhancement of Photocatalytic Decomposition of Methyl Orange under Visible Light,” J. Catal.277(2), 149–153 (2011). [CrossRef]
  5. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of photocatalytic water splitting under visible illumination,” Nano Lett.11(3), 1111–1116 (2011). [CrossRef] [PubMed]
  6. G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, and I. Rubinstein, “UV/Vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films,” J. Phys. Chem. B104(34), 8238–8244 (2000). [CrossRef]
  7. G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, “Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films,” Chemistry8(17), 3849–3857 (2002). [CrossRef] [PubMed]
  8. I. Tokareva, S. Minko, J. H. Fendler, and E. Hutter, “Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy,” J. Am. Chem. Soc.126(49), 15950–15951 (2004). [CrossRef] [PubMed]
  9. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys.99(3), 2101 (1993). [CrossRef]
  10. P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, “Substrate effects on surface-plasmon spectra in metal-island films,” Phys. Rev. B Condens. Matter35(8), 3753–3759 (1987). [CrossRef] [PubMed]
  11. F. Brouers, S. Blacher, A. N. Lagarkov, A. K. Sarychev, P. Gadenne, and V. M. Shalaev, “Theory of giant Raman scattering from semicontinuous metal films,” Phys. Rev. B55(19), 13234–13245 (1997). [CrossRef]
  12. F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B581, 1411451–1415903 (1998).
  13. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B100(1), 159–168 (2010). [CrossRef]
  14. S. Gresillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999). [CrossRef]
  15. S. Ducourtieux, V. A. Podolskiy, S. Grésillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. Safonov, V. Drachev, Z. Ying, A. Sarychev, and V. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B64(16), 165403 (2001). [CrossRef]
  16. J. Theiss, P. Pavaskar, P. M. Echternach, R. E. Muller, and S. B. Cronin, “Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates,” Nano Lett.10(8), 2749–2754 (2010). [CrossRef] [PubMed]
  17. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  18. C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B109(20), 10042–10051 (2005). [CrossRef] [PubMed]
  19. S. Palomba, M. Danckwerts, and L. Novotny, “Nonlinear plasmonics with gold nanoparticle antennas,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009). [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational electrodynamics (Artech House, 1995).
  21. E. D. Palik and G. Ghosh, Handbook of optical constants of solids (Academic Press, 1998).
  22. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003). [CrossRef]
  23. T. Atay, J. H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: From dipole-dipole interaction to conductively coupled regime,” Nano Lett.4(9), 1627–1631 (2004). [CrossRef]
  24. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. De Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005). [CrossRef]
  25. P. Pavaskar and S. B. Cronin, “Iterative optimization of plasmon resonant nanostructures,” Appl. Phys. Lett.94(25), 253102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited