OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14705–14713

Fiber-to-chip coupler designed using an optical transformation

Petr Markov, Jason G. Valentine, and Sharon M. Weiss  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14705-14713 (2012)
http://dx.doi.org/10.1364/OE.20.014705


View Full Text Article

Enhanced HTML    Acrobat PDF (4157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An integrated silicon photonics coupler for fiber to waveguide conversion was designed employing a transformation optics approach. Quasi-conformal mapping was used to obtain achievable material properties, which were realized by a distorted hexagonal lattice of air holes in silicon. The coupler, measuring only 10 μm in length and fabricated with a single-step lithography process, exhibits a peak simulated transmission efficiency of nearly 100% for in-plane mode conversion and a factor of 5 improvement over butt coupling for fiber to waveguide mode conversion in experimental testing.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(220.1770) Optical design and fabrication : Concentrators
(160.3918) Materials : Metamaterials

ToC Category:
Integrated Optics

History
Original Manuscript: March 8, 2012
Revised Manuscript: May 31, 2012
Manuscript Accepted: June 4, 2012
Published: June 15, 2012

Citation
Petr Markov, Jason G. Valentine, and Sharon M. Weiss, "Fiber-to-chip coupler designed using an optical transformation," Opt. Express 20, 14705-14713 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14705


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron.12(6), 1699–1705 (2006). [CrossRef]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  3. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature433(7027), 725–728 (2005). [CrossRef] [PubMed]
  4. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  5. OZ Optics lensed fiber spec sheet, “Tapered and lensed fibers,” (OZ Optics Limited 2011) http://www.ozoptics.com/ALLNEW_PDF/DTS0080.pdf
  6. A. Khilo, M. A. Popović, M. Araghchini, and F. X. Kärtner, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express18(15), 15790–15806 (2010). [CrossRef] [PubMed]
  7. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  8. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μms quare Si wire waveguides to single-mode fibers,” Electron. Lett.38(25), 1669–1670 (2002). [CrossRef]
  9. G. Roelkens, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography,” IEEE Photon. Technol. Lett.17(12), 2613–2615 (2005). [CrossRef]
  10. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett.30(5), 498–500 (2005). [CrossRef] [PubMed]
  11. L. H. Gabrielli and M. Lipson, “Integrated Luneburg lens via ultra-strong index gradient on silicon,” Opt. Express19(21), 20122–20127 (2011). [CrossRef] [PubMed]
  12. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002). [CrossRef]
  13. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett.29(23), 2749–2751 (2004). [CrossRef] [PubMed]
  14. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic naveguides,” J. Lightwave Technol.25(1), 151–156 (2007). [CrossRef]
  15. M. Fan, M. Popović, and F. X. Kärtner, “High directivity, vertical fiber-to-Chip Coupler with anisotropically radiating grating teeth,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper CTuDD3.
  16. B. Moslehi, J. Ng, I. Kasimoff, and T. Jannson, “Fiber-optic coupling based on nonimaging expanded-beam optics,” Opt. Lett.14(23), 1327–1329 (1989). [CrossRef] [PubMed]
  17. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  18. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  19. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008). [CrossRef] [PubMed]
  20. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater.8(7), 568–571 (2009). [CrossRef] [PubMed]
  21. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics3(8), 461–463 (2009). [CrossRef]
  22. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express17(15), 12922–12928 (2009). [CrossRef] [PubMed]
  23. T. Zentgraf, J. Valentine, N. Tapia, J. Li, and X. Zhang, “An optical ‘Janus’ device for integrated photonics,” Adv. Mater. (Deerfield Beach Fla.)22(23), 2561–2564 (2010). [CrossRef]
  24. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys.5(9), 687–692 (2009). [CrossRef]
  25. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An electromagnetic black hole made of Metamaterials,” http://arxiv.org/abs/0910.2159v2 .
  26. C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express19(4), 3562–3575 (2011). [CrossRef] [PubMed]
  27. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology,” Opt. Express18(2), 767–772 (2010). [CrossRef] [PubMed]
  28. X. Zang and C. Jiang, “Manipulating the field distribution via optical transformation,” Opt. Express18(10), 10168–10176 (2010). [CrossRef] [PubMed]
  29. Z. Chang, X. Zhou, J. Hu, and G. Hu, “Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries,” Opt. Express18(6), 6089–6096 (2010). [CrossRef] [PubMed]
  30. D. H. Spadoti, L. H. Gabrielli, C. B. Poitras, and M. Lipson, “Focusing light in a curved-space,” Opt. Express18(3), 3181–3186 (2010). [CrossRef] [PubMed]
  31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited