OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 13 — Jun. 18, 2012
  • pp: 14714–14721

Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities

Xuejun Xu, Toshiki Tsuboi, Taichi Chiba, Noritaka Usami, Takuya Maruizumi, and Yasuhiro Shiraki  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14714-14721 (2012)
http://dx.doi.org/10.1364/OE.20.014714


View Full Text Article

Enhanced HTML    Acrobat PDF (1730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Room temperature light emission from Ge self-assembled quantum dots (QDs) embedded in L3-type photonic crystal (PhC) nanocavity is successfully demonstrated under current injection through a lateral PIN diode structure. The Ge QDs are grown on silicon-on-insulator (SOI) wafer by solid-source molecular beam epitaxy (SS-MBE), and the PIN diode is fabricated by selective ion implantation around the PhC cavity. Under an injected current larger than 0.5 mA, strong resonant electroluminescence (EL) around 1.3–1.5 μm wavelength corresponding to the PhC cavity modes is observed. A sharp peak with a quality factor up to 260 is obtained in the EL spectrum. These results show a possible way to realize practical silicon-based light emitting devices.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: March 13, 2012
Revised Manuscript: May 7, 2012
Manuscript Accepted: May 30, 2012
Published: June 15, 2012

Citation
Xuejun Xu, Toshiki Tsuboi, Taichi Chiba, Noritaka Usami, Takuya Maruizumi, and Yasuhiro Shiraki, "Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities," Opt. Express 20, 14714-14721 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-13-14714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. ReedSilicon Photonics: The State of the Art (J. Wiley & Sons, 2008). [CrossRef]
  2. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa“Silicon Photonics: CMOS Going Optical,” Proc. IEEE97, 1161–1165 (2009). [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature (London)408, 440–444 (2000). [CrossRef]
  4. D. K. Nayak, N. Usami, S. Fukatsu, and Y. Shiraki, “Band-edge photoluminescence of SiGe/strained-Si/SiGe type-II quantum wells on Si (100),” Appl. Phys. Lett.63, 3509–3511 (1993). [CrossRef]
  5. R. Apetz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, “Photoluminescence and electroluminescence of SiGe dots fabricated by island growth,” Appl. Phys. Lett.66, 445–447 (1995). [CrossRef]
  6. H.-S. Han, S.-Y. Seo, and J. H. Shin, “Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide,” Appl. Phys. Lett.79, 4568–4570 (2001). [CrossRef]
  7. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature (London)433, 292–294 (2005). [CrossRef]
  8. S. Fukatsu, H. Sunamura, Y. Shiraki, and S. Komiyama, “Phononless radiative recombination of indirect excitons in a Si/Ge type-II quantum dot,” Appl. Phys. Lett.71, 258–260 (1997). [CrossRef]
  9. T. Brunhes, P. Boucaud, S. Sauvage, F. Aniel, J.-M. Lourtioz, C. Hemandez, Y. Campidelli, O. Kermarrec, D. Bensahel, G. Faini, and I. Sagnes, “Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition,” Appl. Phys. Lett.77, 1822–1824 (2000). [CrossRef]
  10. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  11. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett.89, 201102 (2006). [CrossRef]
  12. J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett.91, 011104 (2007). [CrossRef]
  13. M. E. Kurdi, X. Checoury, S. David, T. P. Ngo, N. Zerounian, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source,” Opt. Express16, 207–210 (2008).
  14. J. Xia, Y. Takeda, N. Usami, and T. Maruizumi, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express18, 13945–13950 (2010). [CrossRef] [PubMed]
  15. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science305, 1444–1447 (2004). [CrossRef] [PubMed]
  16. T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room temperature electroluminescence from Ge quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Express5, 052101 (2012). [CrossRef]
  17. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon.5, 297–300 (2011). [CrossRef]
  18. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, and T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express20, 3773–3780 (2012). [CrossRef] [PubMed]
  19. J. ZieglerSRIM The Stopping and Range of Ions in Matter, Version 2008.03, http://www.srim.org .
  20. A. Mokhberi, P. B. Griffin, J. D. Plummer, E. Paton, S. McCoy, and K. Elliot, “A comparative study of dopant activation in Boron, BF2, Arsenic, and Phosphorus implanted silicon,” IEEE Trans. Electron Dev.49, 1183–1191 (2002). [CrossRef]
  21. RSoft FullWAVE, RSoft Design Group, Inc., http://www.rsoftdesign.com .
  22. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett.88, 011112 (2006). [CrossRef]
  23. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett.91, 211104 (2007). [CrossRef]
  24. S. Nakayama, S. Ishida, S. Iwamoto, and Y. Arakawa, “Effect of cavity mode volume on the photoluminescence from silicon photonic crystal nanocavities,” Appl. Phys. Lett.98, 171102 (2011). [CrossRef]
  25. N. Tran, S. Combrie, P. Colman, A. D. Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010). [CrossRef]
  26. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE6273, 62732J (2006). [CrossRef]
  27. S. Cheng, J. Lu, G. Shambat, H. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 μm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express17, 10019–10024 (2009). [CrossRef] [PubMed]
  28. M. El Kurdi, S. David, P. Boucaud, C. Kammerer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3-1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys.96, 997–1000 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited