OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 14991–15000

Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure

Anjin Liu, Feiya Fu, Yufei Wang, Bin Jiang, and Wanhua Zheng  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 14991-15000 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1539 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. The polarization-insensitive characteristic originates from the combined effect of the TM-polarized high-reflectivity high-index-contrast subwavelength grating and the TE-polarized metallic (Au) subwavelength grating with the addition of the insulator layer. The overlapped high reflectivity (>99.5%) bandwidth between the transverse electric polarization and the transverse magnetic polarization is 89 nm. This polarization-insensitive subwavelength grating reflector can be used in the applications without a preferred polarization.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: March 7, 2012
Revised Manuscript: May 13, 2012
Manuscript Accepted: June 5, 2012
Published: June 20, 2012

Anjin Liu, Feiya Fu, Yufei Wang, Bin Jiang, and Wanhua Zheng, "Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure," Opt. Express 20, 14991-15000 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Y. Chou and W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett.67(6), 742–744 (1995). [CrossRef]
  2. R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett.35(14), 2472–2474 (2010). [CrossRef] [PubMed]
  3. P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photon. Technol. Lett.18(1), 13–15 (2006). [CrossRef]
  4. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express16(22), 17282–17287 (2008). [CrossRef] [PubMed]
  5. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics4(7), 466–470 (2010). [CrossRef]
  6. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18(12), 12606–12614 (2010). [CrossRef] [PubMed]
  7. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  8. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16(2), 518–520 (2004). [CrossRef]
  9. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 mm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004). [CrossRef]
  10. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express16(5), 3456–3462 (2008). [CrossRef] [PubMed]
  11. M. Shokooh-Saremi and R. Magnusson, “Leaky-mode resonant reflectors with extreme bandwidths,” Opt. Lett.35(8), 1121–1123 (2010). [CrossRef] [PubMed]
  12. S. J. Schablitsky, L. Zhuang, R. C. Shi, and S. Y. Chou, “Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings,” Appl. Phys. Lett.69(1), 7–9 (1996). [CrossRef]
  13. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. V. Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs,” IEEE Photon. Technol. Lett.10(9), 1205–1207 (1998). [CrossRef]
  14. A. Haglund, S. J. Gustavsson, J. Vukusic, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarization stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett.41(14), 805–807 (2005). [CrossRef]
  15. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007). [CrossRef]
  16. S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55 μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett.91(7), 071105 (2007). [CrossRef]
  17. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express11(15), 1799–1808 (2003). [CrossRef] [PubMed]
  18. C. Chase, Y. Rao, W. Hofmann, and C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express18(15), 15461–15466 (2010). [CrossRef] [PubMed]
  19. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Nano electro-mechanical optoelectronic tunable VCSEL,” Opt. Express15(3), 1222–1227 (2007). [CrossRef] [PubMed]
  20. W. Hofmann, “Evolution of high-speed long-wavelengthvertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26(1), 014011 (2011). [CrossRef]
  21. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004). [CrossRef] [PubMed]
  22. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photoniccrystal slab,” Appl. Phys. Lett.84(24), 4905–4907 (2004). [CrossRef]
  23. E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. Y. Fan, D. Yost, and S. Rabe, “Low polarization dependent diffraction grating for wavelength demultimlexing,” Opt. Express12(2), 269–275 (2004). [CrossRef] [PubMed]
  24. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12(4), 045703 (2010). [CrossRef]
  25. D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express19(10), 9050–9055 (2011). [CrossRef] [PubMed]
  26. S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprintlithography on flexible plastic substrate,” J. Vac. Sci. Technol. B25(6), 2388–2391 (2007). [CrossRef]
  27. F.-C. Chien, C.-Y. Lin, J.-N. Yih, K.-L. Lee, C.-W. Chang, P.-K. Wei, C.-C. Sun, and S.-J. Chen, “Coupled waveguide-surface plasmon resonance biosensor with subwavelength grating,” Biosens. Bioelectron.22(11), 2737–2742 (2007). [CrossRef] [PubMed]
  28. S. Scheerlinck, J. Schrauwen, F. Van Laere, D. Taillaert, D. Van Thourhout, and R. Baets, “Efficient, broadband and compact metal grating couplers for silicon-on-insulator waveguides,” Opt. Express15(15), 9625–9630 (2007). [CrossRef] [PubMed]
  29. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.83(14), 2845–2848 (1999). [CrossRef]
  30. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13(20), 7760–7771 (2005). [CrossRef]
  31. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002). [CrossRef]
  32. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002). [CrossRef] [PubMed]
  33. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express15(4), 1415–1427 (2007). [CrossRef] [PubMed]
  34. Y. Lu, M. H. Cho, Y. P. Lee, and J. Y. Rhee, “Polarization-independent extraordinary optical transmission in onedimensional metallic gratings with broad slits,” Appl. Phys. Lett.93(6), 061102 (2008). [CrossRef]
  35. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planargrating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  36. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72(10), 1385–1392 (1982). [CrossRef]
  37. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24, 4493–4499 (1985).
  38. C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron.15(3), 869–878 (2009). [CrossRef]
  39. A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavitysurface-emitting laser,” Appl. Phys. Lett.94(19), 191105 (2009). [CrossRef]
  40. A. Liu, W. Chen, M. Xing, W. Zhou, H. Qu, and W. Zheng, “Phase-locked ring-defect photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett.96(15), 151103 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited