OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15035–15044

Polarization behavior of femtosecond laser written optical waveguides in Ti:Sapphire

Jing Bai, Guanghua Cheng, Xuewen Long, Yishan Wang, Wei Zhao, Guofu Chen, Razvan Stoian, and Rongqing Hui  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15035-15044 (2012)
http://dx.doi.org/10.1364/OE.20.015035


View Full Text Article

Enhanced HTML    Acrobat PDF (1558 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrashort pulsed laser photoinscription of Ti:Sapphire crystals may result in the self-organization of nanoscale material redistribution regions in regular patterns within the laser trace and stress-induced birefringence around the laser trace. We report on the formation of anisotropic optical waveguides in Ti:Sapphire by a procedure that involves femtosecond laser inscription of adjacent nonguiding birefringent traces with nanopatterned crosssections and the accumulation of stress birefringence in the region between. Double parallel line structures with a separation of 25μm with vertical and horizontal nanoscale arrangements were written with a choice of orthogonal polarizations. Due to anisotropic light scattering on periodic nanostructures and stress-induced birefringence in the central zone, remarkable polarization dependent guiding effects were observed as a function of the microscopic geometry of the structures. Building on this polarization sensitivity, several structure such as 3 × 3 waveguide arrays, diamond and hexagon patterns are also investigated.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Laser Microfabrication

History
Original Manuscript: April 17, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: June 4, 2012
Published: June 20, 2012

Citation
Jing Bai, Guanghua Cheng, Xuewen Long, Yishan Wang, Wei Zhao, Guofu Chen, Razvan Stoian, and Rongqing Hui, "Polarization behavior of femtosecond laser written optical waveguides in Ti:Sapphire," Opt. Express 20, 15035-15044 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006). [CrossRef]
  2. J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, and A. Tüennermann, “Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate,” Appl. Phys. Lett.91(15), 151108 (2007). [CrossRef]
  3. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003). [CrossRef] [PubMed]
  4. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006). [CrossRef] [PubMed]
  5. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express17(12), 9515–9525 (2009). [CrossRef] [PubMed]
  6. J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983). [CrossRef]
  7. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev.2(1-2), 26–46 (2008). [CrossRef]
  8. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express18(24), 24809–24824 (2010). [CrossRef] [PubMed]
  9. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express16(3), 1517–1522 (2008). [CrossRef] [PubMed]
  10. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85(7), 1122–1124 (2004). [CrossRef]
  11. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007). [CrossRef]
  12. A. Szameit, D. Blömer, J. Burghoff, T. Pertsch, S. Nolte, and A. Tünnermann, “Hexagonal waveguide arrays written with fs-laser pulses,” Appl. Phys. B82(4), 507–512 (2006). [CrossRef]
  13. A. Okhrimchuk, “Femtosecond fabrication of waveguides in ion-doped laser crystal,” Coherence and Ultrashort Pulse Laser Emission, F. J. Duarte, ed., (InTech, 2010), pp. 519–542.
  14. A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B77(10), 104205 (2008). [CrossRef]
  15. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire,” Opt. Express18(8), 8300–8310 (2010). [CrossRef] [PubMed]
  16. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006). [CrossRef] [PubMed]
  17. J. Sapriel, Acousto-optics (John Wiley and Sons, New York, 1979).
  18. J. Xu and R. Stroud, Acousto-optic Devices: Principles, Design, and Applications (John Wiley and Sons, New York, 1992).
  19. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B71(12), 125435 (2005). [CrossRef]
  20. P. P. Rajeev, M. Gerstvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. At. Mol. Opt. Phys.40(11), S273–S282 (2007). [CrossRef]
  21. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011). [CrossRef]
  22. Y. Shimotsuma, K. Hirao, J. Qiu, and P. G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(5), 225–238 (2005). [CrossRef]
  23. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys.9(8), 253 (2007). [CrossRef]
  24. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct.40(7), 1615–1632 (2003). [CrossRef]
  25. V. Mizeikis, S. Kimura, N. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Appl. Surf. Sci.255(24), 9745–9749 (2009). [CrossRef]
  26. S. Juodkazis, K. Nishimura, H. Misawa, T. Ebisui, R. Waki, S. Matsuo, and T. Okada, “Control over the Crystalline State of Sapphire,” Adv. Mater. (Deerfield Beach Fla.)18(11), 1361–1364 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited