OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15061–15070

Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers

Masahiro Kashiwagi, Kunimasa Saitoh, Katsuhiro Takenaga, Shoji Tanigawa, Shoichiro Matsuo, and Munehisa Fujimaki  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15061-15070 (2012)
http://dx.doi.org/10.1364/OE.20.015061


View Full Text Article

Enhanced HTML    Acrobat PDF (1300 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers is fully investigated. The pitch dependencies of effective area, bending loss, and effectively single-mode operation are discussed numerically and experimentally. The calculation results indicate that an effectively single-mode all-solid photonic bandgap fiber with an effective area of more than 500 μm2 and a bending loss of less than 0.1 dB/m at a bending radius of 10 cm can be realized by choosing optimum fiber parameters. In a fabricated effectively single-mode all-solid photonic bandgap fiber with 48.0 μm core, the effective area of 712 μm2, the effectively single-mode operation, and the bending loss of less than 0.1 dB/m at a bending radius of 10 cm are achieved simultaneously at 1064 nm.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 26, 2012
Revised Manuscript: June 11, 2012
Manuscript Accepted: June 12, 2012
Published: June 20, 2012

Virtual Issues
August 31, 2012 Spotlight on Optics

Citation
Masahiro Kashiwagi, Kunimasa Saitoh, Katsuhiro Takenaga, Shoji Tanigawa, Shoichiro Matsuo, and Munehisa Fujimaki, "Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers," Opt. Express 20, 15061-15070 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15061


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M.-J. Li, X. Chen, A. Liu, S. Gray, J. Wang, D. T. Walton, and L. A. Zenteno, “Effective area limit for large mode area laser fibers,” in Proc. OFC’08 (2008), paper OTuJ2.
  2. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006). [CrossRef] [PubMed]
  3. C. D. Brooks and F. D. Teodoro, “Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier,” Appl. Phys. Lett.89(11), 111119 (2006). [CrossRef]
  4. S. Huang, C. Zhu, C. Liu, X. Ma, C. Swan, and A. Galvanauskas, “Power scaling of CCC fiber based lasers,” in Proc. CLEO/QELS’08 (2008), paper CThGG1.
  5. C. Liu, G. Chang, N. Litchinitser, D. Guertin, N. Jacobsen, K. Tankala, and A. Galvanauskas, “Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling,” in Proc. CLEO/QELS’07 (2007), paper CTuBB3.
  6. A. Galvanauskas, M. C. Swan, and C. Liu, “Effectively-single-mode large core passive and active fibers with chirally-coupled-core structures,” in Proc. CLEO/QELS’08 (2008), paper CMB1.
  7. S. Lefrancois, T. S. Sosnowski, C.-H. Liu, A. Galvanauskas, and F. W. Wise, “Energy scaling of mode-locked fiber lasers with chirally-coupled core fiber,” Opt. Express19(4), 3464–3470 (2011). [CrossRef] [PubMed]
  8. S. Février, R. Jamier, J.-M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low-loss singlemode large mode area all-silica photonic bandgap fiber,” Opt. Express14(2), 562–569 (2006). [CrossRef] [PubMed]
  9. D. A. Gaponov, S. Février, M. Devautour, P. Roy, M. E. Likhachev, S. S. Aleshkina, M. Y. Salganskii, M. V. Yashkov, and A. N. Guryanov, “Management of the high-order mode content in large (40 microm) core photonic bandgap Bragg fiber laser,” Opt. Lett.35(13), 2233–2235 (2010). [CrossRef] [PubMed]
  10. S. Fevrier, D. A. Gaponov, P. Roy, M. E. Likhachev, E. M. Dianov, M. Y. Salganskii, M. V. Yashkov, A. N. Guryanov, L. Daniault, M. Hanna, F. Druon, and P. Georges, “All-Silica Photonic Bandgap Fiber Oscillators and Amplifiers,” in Proc. OFC’11 (2011), paper OTuC4.
  11. C. Lecaplain, A. Hideur, S. Février, and P. Roy, “Mode-locked Yb-doped Bragg fiber laser,” Opt. Lett.34(18), 2879–2881 (2009). [CrossRef] [PubMed]
  12. O. N. Egorova, S. L. Semjonov, A. F. Kosolapov, A. N. Denisov, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. V. Yashkov, A. N. Gurianov, and D. V. Kuksenkov, “Single-mode all-silica photonic bandgap fiber with 20-microm mode-field diameter,” Opt. Express16(16), 11735–11740 (2008). [CrossRef] [PubMed]
  13. O. N. Egorova, D. A. Gaponov, N. A. Harchenko, A. F. Kosolapov, S. A. Letunov, A. D. Pryamikov, S. L. Semjonov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, and D. V. Kuksenkov, “All-Solid Photonic Bandgap Fiber with Large Mode Area and High Order Modes Suppression,” in Proc. CLEO/QELS’08 (2008), paper CTuMM3.
  14. K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol.16(6), 409–418 (2010). [CrossRef]
  15. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2.,” Opt. Lett.37(8), 1292–1294 (2012). [CrossRef] [PubMed]
  16. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt.17(13), 2080–2085 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited