OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15086–15092

Focusing through dynamic scattering media

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15086-15092 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (886 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate steady-state focusing of coherent light through dynamic scattering media. The phase of an incident beam is controlled both spatially and temporally using a reflective, 1020-segment MEMS spatial light modulator, using a coordinate descent optimization technique. We achieve focal intensity enhancement of between 5 and 400 for dynamic media with speckle decorrelation time constants ranging from 0.4 seconds to 20 seconds. We show that this optimization approach combined with a fast spatial light modulator enables focusing through dynamic media. The capacity to enhance focal intensity despite transmission through dynamic scattering media could enable advancement in biological microscopy and imaging through turbid environments.

© 2012 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.3990) Optical devices : Micro-optical devices
(230.6120) Optical devices : Spatial light modulators
(290.4210) Scattering : Multiple scattering
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Adaptive Optics

Original Manuscript: May 9, 2012
Revised Manuscript: June 7, 2012
Manuscript Accepted: June 7, 2012
Published: June 20, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, "Focusing through dynamic scattering media," Opt. Express 20, 15086-15092 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett.35(8), 1245–1247 (2010). [CrossRef] [PubMed]
  2. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  3. I. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010). [CrossRef]
  4. G. Montaldo, M. Tanter, and M. Fink, “Time reversal of speckle noise,” Phys. Rev. Lett.106(5), 054301 (2011). [CrossRef] [PubMed]
  5. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett.104(10), 100601 (2010). [CrossRef] [PubMed]
  6. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010). [CrossRef] [PubMed]
  7. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007). [CrossRef] [PubMed]
  8. I. Vellekoop and C. Aegerter, “Focusing light through living tissue,” San Francisco, California, USA, SPIE7554, 755430 (2010). [CrossRef]
  9. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012). [CrossRef] [PubMed]
  10. T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics5(1), 21–23 (2011). [CrossRef]
  11. K. Baker, E. Stappaerts, D. Homoelle, M. Henesian, E. Bliss, C. Siders, and C. Barty, “Interferometric adaptive optics for high-power laser pointing and wavefront control and phasing,” J. Micro/Nano, MEMS and MOEMS8(3), 033040 (2009). [CrossRef]
  12. K. Baker, E. Stappaerts, D. Gavel, S. Wilks, J. Tucker, D. Silva, J. Olsen, S. Olivier, P. Young, M. Kartz, L. Flath, P. Kruelivitch, J. Crawford, and O. Azucena, “High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine,” Opt. Lett.29, 1781–1783 (2004). [CrossRef] [PubMed]
  13. N. Kasdin, R. Vanderbei, and R. Belikov, “Shaped pupil coronagraphy,” C. R. Phys.8(3-4), 312–322 (2007). [CrossRef]
  14. R. Belikov, E. Pluzhnik, M. Connelley, F. Witteborn, D. Lynch, K. Cahoy, O. Guyon, T. Greene, and M. McKelvey, “First results on a new PIAA coronagraph testbed at NASA Ames,” Techniques and Instrumentation for Detection of Exoplanets IV (San Diego, Calif., 2009) Proc. SPIE7440, 74400J (2009). [CrossRef]
  15. R. Belikov, E. Pluzhnik, M. Connelley, F. Witteborn, T. Greene, D. Lynch, P. Zell, and O. Guyon, “Laboratory demonstration of high-contrast imaging at 2 lambda/D on a temperature-stabilized testbed in air,” Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave (San Diego, Calif., 2011) Proc. SPIE7731, D1–D11 (2011).
  16. S. Thomas, R. Soummer, D. Dillon, B. Macintosh, D. Gavel, and A. Sivaramakrishnan, “Testing the apodized pupil Lyot coronagraph on the laboratory for adaptive optics extreme adaptive optics testbed,” Astron. J.142(4), 119 (2011). [CrossRef]
  17. S. Thomas, R. Soummer, D. Dillon, B. Macintosh, J. Evans, D. Gavel, A. Sivaramakrishnan, C. Marois, and B. Oppenheimer, “Testing the APLC on the LAO ExAO testbed,” Adaptive Optics Systems (Marseille, France 2008) SPIE7015, 70156I (2008). [CrossRef]
  18. B. Macintosh, J. Graham, D. Palmer, R. Doyon, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, J. Wallace, B. Bauman, D. Erikson, L. Poyneer, A. Sivaramakrishnan, R. Soummer, and J. Veran, “Adaptive optics for direct detection of extrasolar planets: the Gemini Planet Imager,” C. R. Phys.8(3-4), 365–373 (2007). [CrossRef]
  19. D. Gavel, S. Severson, B. Bauman, D. Dillon, M. Reinig, C. Lockwood, D. Palmer, K. Morzinski, M. Ammons, E. Gates, and G. Grigsby, “Villages: an on-sky visible wavelength astronomy AO experiment using a MEMS deformable mirror,” Proc. SPIE MEMS Adaptive Optics II 6888, 688804–688807 (2008).
  20. F. Wang, “Control of deformable mirror with light-intensity measurements through single-mode fiber,” Appl. Opt.49(31), G60–G66 (2010). [CrossRef]
  21. F. Wang, “Wavefront sensing through measurements of binary aberration modes,” Appl. Opt.48(15), 2865–2870 (2009). [CrossRef] [PubMed]
  22. F. Wang, “Utility transforms of optical fields employing deformable mirror,” Opt. Lett.36(22), 4383–4385 (2011). [CrossRef] [PubMed]
  23. F. Wang, “High-contrast imaging via modal convergence of deformable mirror,” Astrophys. J.751(2), 83 (2012). [CrossRef]
  24. J. Walsh, “A closed set of normal orthogonal functions,” Am. J. Math.45(1), 5–24 (1923). [CrossRef]
  25. H. Schreiber and J. Bruning, Optical Shop Testing (John Wiley & Sons, Inc., 2006), Chap. 15.
  26. I. Vellekoop and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008). [CrossRef]
  27. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (4093 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited