OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15253–15262

Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning

Mattijs de Groot, Conor L. Evans, and Johannes F. de Boer  »View Author Affiliations


Optics Express, Vol. 20, Issue 14, pp. 15253-15262 (2012)
http://dx.doi.org/10.1364/OE.20.015253


View Full Text Article

Enhanced HTML    Acrobat PDF (4670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method for high-resolution, three-dimensional fluorescence imaging. In contrast to beam-scanning confocal microscopy, where the laser focus must be scanned both laterally and axially to collect a volume, we obtain depth information without the necessity of depth scanning. In this method, the emitted fluorescence is collected in the backward direction and is sent through a phase plate that encodes the depth information into the phase of a spectrally resolved interference pattern. We demonstrate that decoding this phase information allows for depth localization accuracy better than 4 µm over a 500 µm depth-of-field. In a high numerical aperture configuration with a much smaller depth of field, a localization accuracy of tens of nanometers can be achieved. This approach is ideally suited for miniature endoscopes, where space limitations at the endoscope tip render depth scanning difficult. We illustrate the potential for 3D visualization of complex biological samples by constructing a three-dimensional volume of the microvasculature of ex vivo murine heart tissue from a single 2D scan.

© 2012 OSA

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 12, 2012
Revised Manuscript: May 23, 2012
Manuscript Accepted: May 25, 2012
Published: June 22, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Mattijs de Groot, Conor L. Evans, and Johannes F. de Boer, "Self-interference fluorescence microscopy: three dimensional fluorescence imaging without depth scanning," Opt. Express 20, 15253-15262 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15253


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Sampath, S. Kwon, S. Ke, W. Wang, R. Schiff, M. E. Mawad, and E. M. Sevick-Muraca, “Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer,” J. Nucl. Med.48(9), 1501–1510 (2007). [CrossRef] [PubMed]
  2. P. Zou, S. Xu, S. P. Povoski, A. Wang, M. A. Johnson, E. W. Martin, V. Subramaniam, R. Xu, and D. Sun, “Near-infrared fluorescence labeled anti-TAG-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice,” Mol. Pharm.6, 428–440 (2009). [CrossRef] [PubMed]
  3. E. A. te Velde, T. Veerman, V. Subramaniam, and T. Ruers, “The use of fluorescent dyes and probes in surgical oncology,” Eur. J. Surg. Oncol.36(1), 6–15 (2010). [CrossRef] [PubMed]
  4. A. G. T. Terwisscha van Scheltinga, G. M. van Dam, W. B. Nagengast, V. Ntziachristos, H. Hollema, J. L. Herek, C. P. Schröder, J. G. W. Kosterink, M. N. Lub-de Hoog, and E. G. E. de Vries, “Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies,” J. Nucl. Med.52(11), 1778–1785 (2011). [CrossRef] [PubMed]
  5. G. M. van Dam, G. Themelis, L. M. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. Arts, A. G. van der Zee, J. Bart, P. S. Low, and V. Ntziachristos, “Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results,” Nat. Med.17(10), 1315–1319 (2011). [CrossRef] [PubMed]
  6. K. E. Drabe, G. Cnossen, and D. A. Wiersma, “Localization of spontaneous emission in front of a mirror,” Opt. Commun.73(2), 91–95 (1989). [CrossRef]
  7. A. K. Swan, L. A. Moiseev, C. R. Cantor, B. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Unlu, “Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference,” IEEE J. Sel. Top. Quantum Electron.9(2), 294–300 (2003). [CrossRef]
  8. M. Dogan, M. I. Aksun, A. K. Swan, B. B. Goldberg, and M. S. Unlü, “Closed-form representations of field components of fluorescent emitters in layered media,” J. Opt. Soc. Am. A26(6), 1458–1466 (2009). [CrossRef] [PubMed]
  9. A. Bilenca, A. Ozcan, B. Bouma, and G. Tearney, “Fluorescence coherence tomography,” Opt. Express14(16), 7134–7143 (2006). [CrossRef] [PubMed]
  10. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3125–3130 (2009). [CrossRef] [PubMed]
  11. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express13(11), 3931–3944 (2005). [CrossRef] [PubMed]
  12. S. L. K. Bowers, T. K. Borg, and T. A. Baudino, “The dynamics of fibroblast-myocyte-capillary interactions in the heart,” Ann. N. Y. Acad. Sci.1188(1), 143–152 (2010). [CrossRef] [PubMed]
  13. I. J. LeGrice, B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter, “Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog,” Am. J. Physiol.269(2 Pt 2), H571–H582 (1995). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (4536 KB)     
» Media 2: AVI (1948 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited