OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15275–15285

Highly indistinguishable heralded single-photon sources using parametric down conversion

Masato Tanida, Ryo Okamoto, and Shigeki Takeuchi  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15275-15285 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically and experimentally investigate the conditions necessary to realize highly indistinguishable single-photon sources using parametric down conversion. The visibilities of Hong–Ou–Mandel (HOM) interference between photons in different fluorescence pairs were measured and a visibility of 95.8 ± 2% was observed using a 0.7-mm-long beta barium borate crystal and 2-nm bandpass filters, after compensating for the reflectivity of the beam splitter. A theoretical model of HOM interference visibilities is proposed that considers non-uniform down conversion process inside the nonlinear crystal. It well explains the experimental results.

© 2012 OSA

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: April 18, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: May 29, 2012
Published: June 22, 2012

Masato Tanida, Ryo Okamoto, and Shigeki Takeuchi, "Highly indistinguishable heralded single-photon sources using parametric down conversion," Opt. Express 20, 15275-15285 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers Systems and Signal Processing175–179 (1984).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, England, 2000).
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science306, 1330–1336 (2004). [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London)409, 46–52 (2001). [CrossRef]
  5. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
  6. T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A65, 062324 (2002). [CrossRef]
  7. H. F. Hofmann and S. Takeuchi, “Quantum phase gate for photonic qubits using only beam splitters and postse-lection,” Phys. Rev. A66, 024308 (2002). [CrossRef]
  8. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature (London)426, 264–267 (2003). [CrossRef]
  9. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett.95, 210504 (2005). [CrossRef] [PubMed]
  10. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95, 210505 (2005). [CrossRef] [PubMed]
  11. R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-NOT gate without path interference,” Phys. Rev. Lett.95, 210506 (2005). [CrossRef] [PubMed]
  12. R. Okamoto, J. L. O’Brien, H. F. Hoffman, T. Nagata, K. Sasaki, and S. Takeuchi, “An entanglement filter,” Science323, 483–485 (2009). [CrossRef] [PubMed]
  13. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys.5, 134–140 (2009). [CrossRef]
  14. R. Okamoto, J. L. O’Brien, H. F. Hofmann, and S. Takeuchi, “Realization of a Knill-Laflamme-Milburn C-NOT gate a photonic quantum circuit combining effective optical nonlinearities,” Proc. Natl. Acad. Sci. USA108, 10067–10071 (2011). [CrossRef] [PubMed]
  15. H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta stone for interferometry,” J. Mod. Opt.49, 2325–2338 (2002). [CrossRef]
  16. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007). [CrossRef] [PubMed]
  17. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett.85, 2733–2736 (2000). [CrossRef] [PubMed]
  18. Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, “Quantum interference fringes beating the diffraction limit,” Opt. Express15, 14244–14250 (2007). [CrossRef] [PubMed]
  19. T. Nagata, R. Okamoto, H. F. Hofmann, and S. Takeuchi, “Analysis of experimental error sources in a linear-optics quantum gate,” New J. Phys.12, 043053 (2010). [CrossRef]
  20. T. Jennewein, R. Ursin, M. Aspelmeyer, and A. Zeilinger, “Performing high-quality multi-photon experiments with parametric down-conversion,” J. Phys. B42, 114008 (2009). [CrossRef]
  21. P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt.45, 595–604 (1998). [CrossRef]
  22. H. R. Zhang and R. P. Wang, “Theory of fourfold interference with photon pairs from spatially separated sources,” Phys. Rev. A75, 053804 (2007). [CrossRef]
  23. M. Barbieri, “Effects of frequency correlation in linear optical entangling gates operated with independent photons,” Phys. Rev. A76, 043825 (2007). [CrossRef]
  24. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A79, 040302(R) (2009). [CrossRef]
  25. M. Zukowski, A. Zeilinger, and H. Weinfurter, “Entangling independent pulsed photon sources,” Ann. N.Y. Acad. Sci.755, 91–102 (1995). [CrossRef]
  26. R. Kaltenbaek, B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 240502 (2006). [CrossRef] [PubMed]
  27. R. Kaltenbaek, 2008 PhD Thesis.
  28. S. M. Saltiel, K. Koynov, B. Agate, and W. Sibbett, “Second-harmonic generation with focused beams under conditions of large group-velocity mismatch,” J. Opt. Soc. Am. B21, 591–598 (2004). [CrossRef]
  29. Y. Kawabe, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Investigation of the spatial propagation properties of type-I parametric fluorescence by use of tuning curve filtering method,” Jpn. J. Appl. Phys.46, 5802–5808 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited