OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 14 — Jul. 2, 2012
  • pp: 15309–15325

Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence

Jacob B. Khurgin and Greg Sun  »View Author Affiliations

Optics Express, Vol. 20, Issue 14, pp. 15309-15325 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1351 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a theoretical model for the semiconductor generator of the sub-wavelength surface plasmons, operating on a single mode and often referred to as a spaser. We show that input-output characteristics of the single mode spaser does not exhibit nonlinearity inherent in most lasers, but the linewidth of the emission collapses, as in any laser which allows us to define the threshold. Our rigorous derivations show that as long as the mode remains substantially sub-wavelength in all three dimensions, the threshold current (power) shows virtually no dependence on the gain material and geometry of the active layer and is determined solely by the intrinsic loss of the metal in the device. For the semiconductor single mode surface plasmon generators operating in the telecommunication range the threshold current is on the order of 10-20 µA, and the threshold current density grows fast with the decrease of the device size reaching 100’s of kA/cm2 or more. This fact makes coherent sources of sub-wavelength SP’s unattainable from our point of view, but there exists a room for efficient broad-band incoherent SP sources either optically or electrically pumped.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: May 1, 2012
Manuscript Accepted: June 1, 2012
Published: June 22, 2012

Jacob B. Khurgin and Greg Sun, "Injection pumped single mode surface plasmon generators: threshold, linewidth, and coherence," Opt. Express 20, 15309-15325 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992). [CrossRef]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  3. D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  4. M. I. Stockman, “Spasers explained,” Nat. Photonics2(6), 327–329 (2008). [CrossRef]
  5. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010). [CrossRef]
  6. M. I. Stockman, “Spaser action, loss compensation, and stability in plasmonic systems with gain,” Phys. Rev. Lett.106(15), 156802 (2011). [CrossRef] [PubMed]
  7. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  8. C.-Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express19(14), 13225–13244 (2011). [CrossRef] [PubMed]
  9. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  11. M. T. Hill, M. Marell, E. S. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  12. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B85(4), 041301 (2012). [CrossRef]
  13. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength Plasmonic Lasing from a Semiconductor Nanodisk with Silver Nanopan Cavity,” Nano Lett.10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  14. A. M. Lakhani, M.-K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express19(19), 18237–18245 (2011). [CrossRef] [PubMed]
  15. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express19(22), 21524–21531 (2011). [CrossRef] [PubMed]
  16. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  17. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012). [CrossRef] [PubMed]
  18. R. F. Oulton, “Plasmonics: Loss and gain,” Nat. Photonics6(4), 219–221 (2012). [CrossRef]
  19. R. F. Oulton, “Surface plasmon lasers: sources of nanoscopic light,” Mater. Today15(1-2), 26–34 (2012). [CrossRef]
  20. R.-M. Ma, R.F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev.1–21 (2012).
  21. P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics6(1), 16–24 (2011). [CrossRef]
  22. F. Wang and Y. R. Shen, “General properties of local Plasmons in metal nanostructures,” Phys. Rev. Lett.97(20), 206806 (2006). [CrossRef] [PubMed]
  23. J. B. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99(21), 211106 (2011). [CrossRef]
  24. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  25. J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett.100(1), 011105 (2012). [CrossRef]
  26. M. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008). [CrossRef]
  27. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408(3-4), 131–314 (2005). [CrossRef]
  28. E. O. Kane, “Band structure of indium antimonide,” J. Phys. Chem. Solids1(4), 249–261 (1957). [CrossRef]
  29. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  30. I. Vurgaftman, J. R. Meyer, and L.-R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys.89(11), 5815–5875 (2001). [CrossRef]
  31. G. H. C. New, “The origin of excess noise,” J. Mod. Opt.42(4), 799–810 (1995). [CrossRef]
  32. M. J. Connelly, Semiconductor Optical Amplifiers (Springer-Verlag, Boston, Massachusetts, 2002).
  33. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev.112(6), 1940–1949 (1958). [CrossRef]
  34. H. Statz, and G. De Mars, Quantum Electronics, ed. C. H. Townes (Columbia University Press, 1960) 530.
  35. D. A. Kleiman, “The maser rate equations and spiking,” Bell Syst. Tech. J.43, 1505–1532 (1964).
  36. G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A50(2), 1675–1680 (1994). [CrossRef] [PubMed]
  37. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission From GaAs Junctions,” Phys. Rev. Lett.9(9), 366–368 (1962). [CrossRef]
  38. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett.17(3), 109–111 (1970). [CrossRef]
  39. Zh. I. Alferov and R. F. Kazarinov, “Semiconductor laser with electric pumping,” Inventor’s Certificate No. 181737 [in Russian], Application No. 950840, priority as of March 30, 1963.
  40. H. Kroemer, “A Proposed Class of Heterojunction Injection Lasers,” Proc. IEEE51(12), 1782–1783 (1963). [CrossRef]
  41. J. B. Khurgin and G. Sun, “In search of the elusive lossless metal,” Appl. Phys. Lett.96(18), 181102 (2010). [CrossRef]
  42. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett.94(10), 101103 (2009). [CrossRef]
  43. G. Sun and J. B. Khurgin, “Plasmon Enhancement of Luminescence by Metal Nanoparticles,” IEEE J. Sel. Top. Quantum Electron.17(1), 110–118 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited